Bovine serum albumin-confined silver nanoclusters as fluorometric probe for detection of biothiols

ABSTRACT Fluorescent bovine serum albumin‐confined silver nanoclusters (BSA–AgNCs) were demonstrated to be a novel and environmentally friendly probe for the rapid detection of biothiols such as cysteine (Cys), homocysteine (Hcy) and glutathione (GSH). The sensing was ascribed to the strong affinity...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Luminescence (Chichester, England) England), 2014-11, Vol.29 (7), p.722-727
Hauptverfasser: Chen, Zhen, Lu, Dongtao, Cai, Zongwei, Dong, Chuan, Shuang, Shaomin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 727
container_issue 7
container_start_page 722
container_title Luminescence (Chichester, England)
container_volume 29
creator Chen, Zhen
Lu, Dongtao
Cai, Zongwei
Dong, Chuan
Shuang, Shaomin
description ABSTRACT Fluorescent bovine serum albumin‐confined silver nanoclusters (BSA–AgNCs) were demonstrated to be a novel and environmentally friendly probe for the rapid detection of biothiols such as cysteine (Cys), homocysteine (Hcy) and glutathione (GSH). The sensing was ascribed to the strong affinity between the mercapto group of the biothiols and the silver nanoclusters. The fluorescence intensity of BSA–AgNCs was quenched efficiently on increasing the concentration of biothiol, corresponding with a red‐shift in emission wavelength. However, the fluorescence of the silver nanoclusters was almost unchanged in the presence of other α‐amino acids at 10‐fold higher concentrations. By virtue of this specific response, a new, simple and rapid fluorescent method for detecting biothiols has been developed. The linear ranges for Cys, Hcy and GSH were 2.0 × 10‐6 to 9.0 × 10‐5 M (R2 = 0.994), 2.0 × 10‐6 to 1.2 × 10‐4 M (R2 = 0.996) and 1.0 × 10‐5 to 8.0 × 10‐5 M (R2 = 0.980), respectively. The detection limits were 8.1 × 10‐7 M for Cys, 1.0 × 10‐6 M for Hcy and 1.1 × 10‐6 M for GSH. Our proposed method was successfully applied to the determination of thiols in human plasma and the recovery was 94.83–105.24%. It is potentially applicable to protein‐stabilized silver nanoclusters in a chemical or biochemical sensing system. Copyright © 2014 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/bio.2613
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677998151</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1609310902</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5893-bce5bb49f0c2702002fe9d32d962e5656559ef064a5f960e2f2ec1c7457fff6a3</originalsourceid><addsrcrecordid>eNqN0U9rFDEYBvAgFlur4CeQgBcv0-bPJJkc3aWuldIiKD2GTOYNpmYmNZmp9tubpesiQqHkkBB-POTNg9AbSk4oIey0D-mEScqfoSMqGGsUa_nz_ZmLQ_SylBtCiJRSv0CHrG0Jp5weoX6V7sIEuEBeRmxjv4xhalyafL0dcAnxDjKe7JRcXMoMuWBbsI9LymmEOQeHb3PqAfuU8QAzuDmkCSeP65vm7yHF8godeBsLvN7tx-jbx7Ov60_NxdXmfP3honGi07zpHYi-b7UnjinC6lge9MDZoCUDIesSGjyRrRVeSwLMM3DUqVYo7720_Bi9f8itD_q5QJnNGIqDGO0EaSmGSqW07qigT6BM87YVunsCJZpTogmr9N1_9CYteaozbxXRXSfVP4Eup1IyeHObw2jzvaHEbNs09efMts1K3-4Cl36EYQ__1ldB8wB-hQj3jwaZ1fnVLnDnQ63y997b_MNIxZUw15cbo7-srj9vurVZ8z9D5bck</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1600988678</pqid></control><display><type>article</type><title>Bovine serum albumin-confined silver nanoclusters as fluorometric probe for detection of biothiols</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Chen, Zhen ; Lu, Dongtao ; Cai, Zongwei ; Dong, Chuan ; Shuang, Shaomin</creator><creatorcontrib>Chen, Zhen ; Lu, Dongtao ; Cai, Zongwei ; Dong, Chuan ; Shuang, Shaomin</creatorcontrib><description>ABSTRACT Fluorescent bovine serum albumin‐confined silver nanoclusters (BSA–AgNCs) were demonstrated to be a novel and environmentally friendly probe for the rapid detection of biothiols such as cysteine (Cys), homocysteine (Hcy) and glutathione (GSH). The sensing was ascribed to the strong affinity between the mercapto group of the biothiols and the silver nanoclusters. The fluorescence intensity of BSA–AgNCs was quenched efficiently on increasing the concentration of biothiol, corresponding with a red‐shift in emission wavelength. However, the fluorescence of the silver nanoclusters was almost unchanged in the presence of other α‐amino acids at 10‐fold higher concentrations. By virtue of this specific response, a new, simple and rapid fluorescent method for detecting biothiols has been developed. The linear ranges for Cys, Hcy and GSH were 2.0 × 10‐6 to 9.0 × 10‐5 M (R2 = 0.994), 2.0 × 10‐6 to 1.2 × 10‐4 M (R2 = 0.996) and 1.0 × 10‐5 to 8.0 × 10‐5 M (R2 = 0.980), respectively. The detection limits were 8.1 × 10‐7 M for Cys, 1.0 × 10‐6 M for Hcy and 1.1 × 10‐6 M for GSH. Our proposed method was successfully applied to the determination of thiols in human plasma and the recovery was 94.83–105.24%. It is potentially applicable to protein‐stabilized silver nanoclusters in a chemical or biochemical sensing system. Copyright © 2014 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 1522-7235</identifier><identifier>EISSN: 1522-7243</identifier><identifier>DOI: 10.1002/bio.2613</identifier><identifier>PMID: 24403131</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Animals ; Biochemistry ; biothiols ; bovine serum albumin ; Cattle ; Detection ; Fluorescence ; Fluorescent Dyes - analysis ; Fluorescent Dyes - chemistry ; Fluorometers ; Humans ; Luminescence ; Metal Nanoparticles - chemistry ; Nanostructure ; Particle Size ; Serum Albumin, Bovine - chemistry ; Serums ; Silver ; Silver - chemistry ; silver nanoclusters ; Sulfhydryl Compounds - analysis ; Surface Properties</subject><ispartof>Luminescence (Chichester, England), 2014-11, Vol.29 (7), p.722-727</ispartof><rights>Copyright © 2014 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5893-bce5bb49f0c2702002fe9d32d962e5656559ef064a5f960e2f2ec1c7457fff6a3</citedby><cites>FETCH-LOGICAL-c5893-bce5bb49f0c2702002fe9d32d962e5656559ef064a5f960e2f2ec1c7457fff6a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbio.2613$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbio.2613$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24403131$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Zhen</creatorcontrib><creatorcontrib>Lu, Dongtao</creatorcontrib><creatorcontrib>Cai, Zongwei</creatorcontrib><creatorcontrib>Dong, Chuan</creatorcontrib><creatorcontrib>Shuang, Shaomin</creatorcontrib><title>Bovine serum albumin-confined silver nanoclusters as fluorometric probe for detection of biothiols</title><title>Luminescence (Chichester, England)</title><addtitle>Luminescence</addtitle><description>ABSTRACT Fluorescent bovine serum albumin‐confined silver nanoclusters (BSA–AgNCs) were demonstrated to be a novel and environmentally friendly probe for the rapid detection of biothiols such as cysteine (Cys), homocysteine (Hcy) and glutathione (GSH). The sensing was ascribed to the strong affinity between the mercapto group of the biothiols and the silver nanoclusters. The fluorescence intensity of BSA–AgNCs was quenched efficiently on increasing the concentration of biothiol, corresponding with a red‐shift in emission wavelength. However, the fluorescence of the silver nanoclusters was almost unchanged in the presence of other α‐amino acids at 10‐fold higher concentrations. By virtue of this specific response, a new, simple and rapid fluorescent method for detecting biothiols has been developed. The linear ranges for Cys, Hcy and GSH were 2.0 × 10‐6 to 9.0 × 10‐5 M (R2 = 0.994), 2.0 × 10‐6 to 1.2 × 10‐4 M (R2 = 0.996) and 1.0 × 10‐5 to 8.0 × 10‐5 M (R2 = 0.980), respectively. The detection limits were 8.1 × 10‐7 M for Cys, 1.0 × 10‐6 M for Hcy and 1.1 × 10‐6 M for GSH. Our proposed method was successfully applied to the determination of thiols in human plasma and the recovery was 94.83–105.24%. It is potentially applicable to protein‐stabilized silver nanoclusters in a chemical or biochemical sensing system. Copyright © 2014 John Wiley &amp; Sons, Ltd.</description><subject>Animals</subject><subject>Biochemistry</subject><subject>biothiols</subject><subject>bovine serum albumin</subject><subject>Cattle</subject><subject>Detection</subject><subject>Fluorescence</subject><subject>Fluorescent Dyes - analysis</subject><subject>Fluorescent Dyes - chemistry</subject><subject>Fluorometers</subject><subject>Humans</subject><subject>Luminescence</subject><subject>Metal Nanoparticles - chemistry</subject><subject>Nanostructure</subject><subject>Particle Size</subject><subject>Serum Albumin, Bovine - chemistry</subject><subject>Serums</subject><subject>Silver</subject><subject>Silver - chemistry</subject><subject>silver nanoclusters</subject><subject>Sulfhydryl Compounds - analysis</subject><subject>Surface Properties</subject><issn>1522-7235</issn><issn>1522-7243</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0U9rFDEYBvAgFlur4CeQgBcv0-bPJJkc3aWuldIiKD2GTOYNpmYmNZmp9tubpesiQqHkkBB-POTNg9AbSk4oIey0D-mEScqfoSMqGGsUa_nz_ZmLQ_SylBtCiJRSv0CHrG0Jp5weoX6V7sIEuEBeRmxjv4xhalyafL0dcAnxDjKe7JRcXMoMuWBbsI9LymmEOQeHb3PqAfuU8QAzuDmkCSeP65vm7yHF8godeBsLvN7tx-jbx7Ov60_NxdXmfP3honGi07zpHYi-b7UnjinC6lge9MDZoCUDIesSGjyRrRVeSwLMM3DUqVYo7720_Bi9f8itD_q5QJnNGIqDGO0EaSmGSqW07qigT6BM87YVunsCJZpTogmr9N1_9CYteaozbxXRXSfVP4Eup1IyeHObw2jzvaHEbNs09efMts1K3-4Cl36EYQ__1ldB8wB-hQj3jwaZ1fnVLnDnQ63y997b_MNIxZUw15cbo7-srj9vurVZ8z9D5bck</recordid><startdate>201411</startdate><enddate>201411</enddate><creator>Chen, Zhen</creator><creator>Lu, Dongtao</creator><creator>Cai, Zongwei</creator><creator>Dong, Chuan</creator><creator>Shuang, Shaomin</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U7</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H95</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201411</creationdate><title>Bovine serum albumin-confined silver nanoclusters as fluorometric probe for detection of biothiols</title><author>Chen, Zhen ; Lu, Dongtao ; Cai, Zongwei ; Dong, Chuan ; Shuang, Shaomin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5893-bce5bb49f0c2702002fe9d32d962e5656559ef064a5f960e2f2ec1c7457fff6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Biochemistry</topic><topic>biothiols</topic><topic>bovine serum albumin</topic><topic>Cattle</topic><topic>Detection</topic><topic>Fluorescence</topic><topic>Fluorescent Dyes - analysis</topic><topic>Fluorescent Dyes - chemistry</topic><topic>Fluorometers</topic><topic>Humans</topic><topic>Luminescence</topic><topic>Metal Nanoparticles - chemistry</topic><topic>Nanostructure</topic><topic>Particle Size</topic><topic>Serum Albumin, Bovine - chemistry</topic><topic>Serums</topic><topic>Silver</topic><topic>Silver - chemistry</topic><topic>silver nanoclusters</topic><topic>Sulfhydryl Compounds - analysis</topic><topic>Surface Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Zhen</creatorcontrib><creatorcontrib>Lu, Dongtao</creatorcontrib><creatorcontrib>Cai, Zongwei</creatorcontrib><creatorcontrib>Dong, Chuan</creatorcontrib><creatorcontrib>Shuang, Shaomin</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Luminescence (Chichester, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Zhen</au><au>Lu, Dongtao</au><au>Cai, Zongwei</au><au>Dong, Chuan</au><au>Shuang, Shaomin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bovine serum albumin-confined silver nanoclusters as fluorometric probe for detection of biothiols</atitle><jtitle>Luminescence (Chichester, England)</jtitle><addtitle>Luminescence</addtitle><date>2014-11</date><risdate>2014</risdate><volume>29</volume><issue>7</issue><spage>722</spage><epage>727</epage><pages>722-727</pages><issn>1522-7235</issn><eissn>1522-7243</eissn><abstract>ABSTRACT Fluorescent bovine serum albumin‐confined silver nanoclusters (BSA–AgNCs) were demonstrated to be a novel and environmentally friendly probe for the rapid detection of biothiols such as cysteine (Cys), homocysteine (Hcy) and glutathione (GSH). The sensing was ascribed to the strong affinity between the mercapto group of the biothiols and the silver nanoclusters. The fluorescence intensity of BSA–AgNCs was quenched efficiently on increasing the concentration of biothiol, corresponding with a red‐shift in emission wavelength. However, the fluorescence of the silver nanoclusters was almost unchanged in the presence of other α‐amino acids at 10‐fold higher concentrations. By virtue of this specific response, a new, simple and rapid fluorescent method for detecting biothiols has been developed. The linear ranges for Cys, Hcy and GSH were 2.0 × 10‐6 to 9.0 × 10‐5 M (R2 = 0.994), 2.0 × 10‐6 to 1.2 × 10‐4 M (R2 = 0.996) and 1.0 × 10‐5 to 8.0 × 10‐5 M (R2 = 0.980), respectively. The detection limits were 8.1 × 10‐7 M for Cys, 1.0 × 10‐6 M for Hcy and 1.1 × 10‐6 M for GSH. Our proposed method was successfully applied to the determination of thiols in human plasma and the recovery was 94.83–105.24%. It is potentially applicable to protein‐stabilized silver nanoclusters in a chemical or biochemical sensing system. Copyright © 2014 John Wiley &amp; Sons, Ltd.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>24403131</pmid><doi>10.1002/bio.2613</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1522-7235
ispartof Luminescence (Chichester, England), 2014-11, Vol.29 (7), p.722-727
issn 1522-7235
1522-7243
language eng
recordid cdi_proquest_miscellaneous_1677998151
source MEDLINE; Wiley Online Library All Journals
subjects Animals
Biochemistry
biothiols
bovine serum albumin
Cattle
Detection
Fluorescence
Fluorescent Dyes - analysis
Fluorescent Dyes - chemistry
Fluorometers
Humans
Luminescence
Metal Nanoparticles - chemistry
Nanostructure
Particle Size
Serum Albumin, Bovine - chemistry
Serums
Silver
Silver - chemistry
silver nanoclusters
Sulfhydryl Compounds - analysis
Surface Properties
title Bovine serum albumin-confined silver nanoclusters as fluorometric probe for detection of biothiols
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T20%3A24%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bovine%20serum%20albumin-confined%20silver%20nanoclusters%20as%20fluorometric%20probe%20for%20detection%20of%20biothiols&rft.jtitle=Luminescence%20(Chichester,%20England)&rft.au=Chen,%20Zhen&rft.date=2014-11&rft.volume=29&rft.issue=7&rft.spage=722&rft.epage=727&rft.pages=722-727&rft.issn=1522-7235&rft.eissn=1522-7243&rft_id=info:doi/10.1002/bio.2613&rft_dat=%3Cproquest_cross%3E1609310902%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1600988678&rft_id=info:pmid/24403131&rfr_iscdi=true