An automatic acoustic bat identification system based on the audible spectrum

•Recognition of bat locutions obtained automatically from a long recording.•New method of conversion of the locutions to the audible band.•Noise-free spectrogram images.•97.3% of correct rate classification for 7 classes. Nowadays the task of monitoring bat species is a very difficult task because o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Expert systems with applications 2014-09, Vol.41 (11), p.5451-5465
Hauptverfasser: Henríquez, Aarón, Alonso, Jesús B., Travieso, Carlos M., Rodríguez-Herrera, Bernal, Bolaños, Federico, Alpízar, Priscilla, López-de-Ipina, Karmele, Henríquez, Patricia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5465
container_issue 11
container_start_page 5451
container_title Expert systems with applications
container_volume 41
creator Henríquez, Aarón
Alonso, Jesús B.
Travieso, Carlos M.
Rodríguez-Herrera, Bernal
Bolaños, Federico
Alpízar, Priscilla
López-de-Ipina, Karmele
Henríquez, Patricia
description •Recognition of bat locutions obtained automatically from a long recording.•New method of conversion of the locutions to the audible band.•Noise-free spectrogram images.•97.3% of correct rate classification for 7 classes. Nowadays the task of monitoring bat species is a very difficult task because of several factors. The main ones are the difficulty of creating databases automatically and the particularities of the vocalizations of bats. For this reason, it is common to extract bat calls manually from a recording and treat them individually. We propose a new form of identification and labeling process based on adapting bat calls to the audible spectrum and significantly reducing the noise of its spectrogram. This process can be performed automatically from a recording made in a natural area. Our database consists of 189h of recordings obtained in various natural areas in Costa Rica. 50 bats calls of 7 different classes are extracted from this database. We have obtained an average error of 2.7% and 3 of the 7 classes have an error below 1%.
doi_str_mv 10.1016/j.eswa.2014.02.021
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677997406</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0957417414000840</els_id><sourcerecordid>1567059078</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-fc79516c1b9bfebb6df01e05f5fc5ae5fa9006f3abaf86a7d4665d0613e3737e3</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWD_-gKe9CF62TjabZANeivgFFS96DtnsBFP2oyap4r83pcWjwkAS5nlnyEPIBYU5BSquV3OMX2ZeAa3nUOWiB2RGG8lKIRU7JDNQXJY1lfUxOYlxBUAlgJyR58VYmE2aBpO8LYydNnF7aU0qfIdj8s7b3JrGIn7HhEPuROyK_E7vmJOdb3ss4hptCpvhjBw500c835-n5O3-7vX2sVy-PDzdLpalZUqk0lmpOBWWtqp12Laic0ARuOPOcoPcGQUgHDOtcY0wsquF4B0IypBJJpGdkqvd3HWYPjYYkx58tNj3ZsT8A02FlErJGsT_KBcSuALZZLTaoTZMMQZ0eh38YMK3pqC3mvVKbzXrrWYNVS6aQ5f7-SZa07tgRuvjb7JqatZUssrczY7D7OXTY9DRehwtdj5kebqb_F9rfgCi0pPV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1567059078</pqid></control><display><type>article</type><title>An automatic acoustic bat identification system based on the audible spectrum</title><source>Access via ScienceDirect (Elsevier)</source><creator>Henríquez, Aarón ; Alonso, Jesús B. ; Travieso, Carlos M. ; Rodríguez-Herrera, Bernal ; Bolaños, Federico ; Alpízar, Priscilla ; López-de-Ipina, Karmele ; Henríquez, Patricia</creator><creatorcontrib>Henríquez, Aarón ; Alonso, Jesús B. ; Travieso, Carlos M. ; Rodríguez-Herrera, Bernal ; Bolaños, Federico ; Alpízar, Priscilla ; López-de-Ipina, Karmele ; Henríquez, Patricia</creatorcontrib><description>•Recognition of bat locutions obtained automatically from a long recording.•New method of conversion of the locutions to the audible band.•Noise-free spectrogram images.•97.3% of correct rate classification for 7 classes. Nowadays the task of monitoring bat species is a very difficult task because of several factors. The main ones are the difficulty of creating databases automatically and the particularities of the vocalizations of bats. For this reason, it is common to extract bat calls manually from a recording and treat them individually. We propose a new form of identification and labeling process based on adapting bat calls to the audible spectrum and significantly reducing the noise of its spectrogram. This process can be performed automatically from a recording made in a natural area. Our database consists of 189h of recordings obtained in various natural areas in Costa Rica. 50 bats calls of 7 different classes are extracted from this database. We have obtained an average error of 2.7% and 3 of the 7 classes have an error below 1%.</description><identifier>ISSN: 0957-4174</identifier><identifier>EISSN: 1873-6793</identifier><identifier>DOI: 10.1016/j.eswa.2014.02.021</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Acoustics ; Aeroacoustics, atmospheric sound ; Applied sciences ; Audio adaptation ; Bat identification ; Bats ; Computer science; control theory; systems ; Data processing. List processing. Character string processing ; Errors ; Exact sciences and technology ; Expert systems ; Feature extraction ; Fundamental areas of phenomenology (including applications) ; Memory organisation. Data processing ; Monitoring ; Physics ; Recording ; Software ; Spectrogram ; Spectrograms ; Tasks</subject><ispartof>Expert systems with applications, 2014-09, Vol.41 (11), p.5451-5465</ispartof><rights>2014 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-fc79516c1b9bfebb6df01e05f5fc5ae5fa9006f3abaf86a7d4665d0613e3737e3</citedby><cites>FETCH-LOGICAL-c396t-fc79516c1b9bfebb6df01e05f5fc5ae5fa9006f3abaf86a7d4665d0613e3737e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.eswa.2014.02.021$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28438272$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Henríquez, Aarón</creatorcontrib><creatorcontrib>Alonso, Jesús B.</creatorcontrib><creatorcontrib>Travieso, Carlos M.</creatorcontrib><creatorcontrib>Rodríguez-Herrera, Bernal</creatorcontrib><creatorcontrib>Bolaños, Federico</creatorcontrib><creatorcontrib>Alpízar, Priscilla</creatorcontrib><creatorcontrib>López-de-Ipina, Karmele</creatorcontrib><creatorcontrib>Henríquez, Patricia</creatorcontrib><title>An automatic acoustic bat identification system based on the audible spectrum</title><title>Expert systems with applications</title><description>•Recognition of bat locutions obtained automatically from a long recording.•New method of conversion of the locutions to the audible band.•Noise-free spectrogram images.•97.3% of correct rate classification for 7 classes. Nowadays the task of monitoring bat species is a very difficult task because of several factors. The main ones are the difficulty of creating databases automatically and the particularities of the vocalizations of bats. For this reason, it is common to extract bat calls manually from a recording and treat them individually. We propose a new form of identification and labeling process based on adapting bat calls to the audible spectrum and significantly reducing the noise of its spectrogram. This process can be performed automatically from a recording made in a natural area. Our database consists of 189h of recordings obtained in various natural areas in Costa Rica. 50 bats calls of 7 different classes are extracted from this database. We have obtained an average error of 2.7% and 3 of the 7 classes have an error below 1%.</description><subject>Acoustics</subject><subject>Aeroacoustics, atmospheric sound</subject><subject>Applied sciences</subject><subject>Audio adaptation</subject><subject>Bat identification</subject><subject>Bats</subject><subject>Computer science; control theory; systems</subject><subject>Data processing. List processing. Character string processing</subject><subject>Errors</subject><subject>Exact sciences and technology</subject><subject>Expert systems</subject><subject>Feature extraction</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Memory organisation. Data processing</subject><subject>Monitoring</subject><subject>Physics</subject><subject>Recording</subject><subject>Software</subject><subject>Spectrogram</subject><subject>Spectrograms</subject><subject>Tasks</subject><issn>0957-4174</issn><issn>1873-6793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWD_-gKe9CF62TjabZANeivgFFS96DtnsBFP2oyap4r83pcWjwkAS5nlnyEPIBYU5BSquV3OMX2ZeAa3nUOWiB2RGG8lKIRU7JDNQXJY1lfUxOYlxBUAlgJyR58VYmE2aBpO8LYydNnF7aU0qfIdj8s7b3JrGIn7HhEPuROyK_E7vmJOdb3ss4hptCpvhjBw500c835-n5O3-7vX2sVy-PDzdLpalZUqk0lmpOBWWtqp12Laic0ARuOPOcoPcGQUgHDOtcY0wsquF4B0IypBJJpGdkqvd3HWYPjYYkx58tNj3ZsT8A02FlErJGsT_KBcSuALZZLTaoTZMMQZ0eh38YMK3pqC3mvVKbzXrrWYNVS6aQ5f7-SZa07tgRuvjb7JqatZUssrczY7D7OXTY9DRehwtdj5kebqb_F9rfgCi0pPV</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>Henríquez, Aarón</creator><creator>Alonso, Jesús B.</creator><creator>Travieso, Carlos M.</creator><creator>Rodríguez-Herrera, Bernal</creator><creator>Bolaños, Federico</creator><creator>Alpízar, Priscilla</creator><creator>López-de-Ipina, Karmele</creator><creator>Henríquez, Patricia</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140901</creationdate><title>An automatic acoustic bat identification system based on the audible spectrum</title><author>Henríquez, Aarón ; Alonso, Jesús B. ; Travieso, Carlos M. ; Rodríguez-Herrera, Bernal ; Bolaños, Federico ; Alpízar, Priscilla ; López-de-Ipina, Karmele ; Henríquez, Patricia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-fc79516c1b9bfebb6df01e05f5fc5ae5fa9006f3abaf86a7d4665d0613e3737e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Acoustics</topic><topic>Aeroacoustics, atmospheric sound</topic><topic>Applied sciences</topic><topic>Audio adaptation</topic><topic>Bat identification</topic><topic>Bats</topic><topic>Computer science; control theory; systems</topic><topic>Data processing. List processing. Character string processing</topic><topic>Errors</topic><topic>Exact sciences and technology</topic><topic>Expert systems</topic><topic>Feature extraction</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Memory organisation. Data processing</topic><topic>Monitoring</topic><topic>Physics</topic><topic>Recording</topic><topic>Software</topic><topic>Spectrogram</topic><topic>Spectrograms</topic><topic>Tasks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Henríquez, Aarón</creatorcontrib><creatorcontrib>Alonso, Jesús B.</creatorcontrib><creatorcontrib>Travieso, Carlos M.</creatorcontrib><creatorcontrib>Rodríguez-Herrera, Bernal</creatorcontrib><creatorcontrib>Bolaños, Federico</creatorcontrib><creatorcontrib>Alpízar, Priscilla</creatorcontrib><creatorcontrib>López-de-Ipina, Karmele</creatorcontrib><creatorcontrib>Henríquez, Patricia</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Expert systems with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Henríquez, Aarón</au><au>Alonso, Jesús B.</au><au>Travieso, Carlos M.</au><au>Rodríguez-Herrera, Bernal</au><au>Bolaños, Federico</au><au>Alpízar, Priscilla</au><au>López-de-Ipina, Karmele</au><au>Henríquez, Patricia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An automatic acoustic bat identification system based on the audible spectrum</atitle><jtitle>Expert systems with applications</jtitle><date>2014-09-01</date><risdate>2014</risdate><volume>41</volume><issue>11</issue><spage>5451</spage><epage>5465</epage><pages>5451-5465</pages><issn>0957-4174</issn><eissn>1873-6793</eissn><abstract>•Recognition of bat locutions obtained automatically from a long recording.•New method of conversion of the locutions to the audible band.•Noise-free spectrogram images.•97.3% of correct rate classification for 7 classes. Nowadays the task of monitoring bat species is a very difficult task because of several factors. The main ones are the difficulty of creating databases automatically and the particularities of the vocalizations of bats. For this reason, it is common to extract bat calls manually from a recording and treat them individually. We propose a new form of identification and labeling process based on adapting bat calls to the audible spectrum and significantly reducing the noise of its spectrogram. This process can be performed automatically from a recording made in a natural area. Our database consists of 189h of recordings obtained in various natural areas in Costa Rica. 50 bats calls of 7 different classes are extracted from this database. We have obtained an average error of 2.7% and 3 of the 7 classes have an error below 1%.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.eswa.2014.02.021</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0957-4174
ispartof Expert systems with applications, 2014-09, Vol.41 (11), p.5451-5465
issn 0957-4174
1873-6793
language eng
recordid cdi_proquest_miscellaneous_1677997406
source Access via ScienceDirect (Elsevier)
subjects Acoustics
Aeroacoustics, atmospheric sound
Applied sciences
Audio adaptation
Bat identification
Bats
Computer science
control theory
systems
Data processing. List processing. Character string processing
Errors
Exact sciences and technology
Expert systems
Feature extraction
Fundamental areas of phenomenology (including applications)
Memory organisation. Data processing
Monitoring
Physics
Recording
Software
Spectrogram
Spectrograms
Tasks
title An automatic acoustic bat identification system based on the audible spectrum
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T20%3A27%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20automatic%20acoustic%20bat%20identification%20system%20based%20on%20the%20audible%20spectrum&rft.jtitle=Expert%20systems%20with%20applications&rft.au=Henr%C3%ADquez,%20Aar%C3%B3n&rft.date=2014-09-01&rft.volume=41&rft.issue=11&rft.spage=5451&rft.epage=5465&rft.pages=5451-5465&rft.issn=0957-4174&rft.eissn=1873-6793&rft_id=info:doi/10.1016/j.eswa.2014.02.021&rft_dat=%3Cproquest_cross%3E1567059078%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1567059078&rft_id=info:pmid/&rft_els_id=S0957417414000840&rfr_iscdi=true