Memory Constrained ANT Colony System for Task Scheduling in GRID Computing
Grid computing solves the increasing need of scientific, engineering and research problems. It combines the geographically distributed resources to solve a computation intensive problem which cannot be solved using a single resource. Resource sharing requires more optimized algorithmic structure, ot...
Gespeichert in:
Veröffentlicht in: | International Journal of Grid Computing & Applications 2012-09, Vol.3 (3), p.11-20 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 20 |
---|---|
container_issue | 3 |
container_start_page | 11 |
container_title | International Journal of Grid Computing & Applications |
container_volume | 3 |
creator | Kokilavani, T |
description | Grid computing solves the increasing need of scientific, engineering and research problems. It combines the geographically distributed resources to solve a computation intensive problem which cannot be solved using a single resource. Resource sharing requires more optimized algorithmic structure, otherwise the response time is increased and the resource utilization is reduced. In order to avoid such reduction in the performance of the grid system, an optimal resource sharing algorithm is required. The ACO solves many engineering problems and provides optimal result which includes Travelling Salesman Problem, Network Routing, and Scheduling. This paper proposes Load Shared Ant Colony Optimization (LSACO) which shares the load among the available resources. The proposed method considers memory requirement as a parameter to distribute the load among Grid resources. LSACO reduces the overall response time and increases the resource utilization and number of tasks scheduled. The proposed method has been tested for different types of tasks and resources. |
doi_str_mv | 10.5121/ijgca.2012.3302 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677995016</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1677995016</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1142-81f1f2b5d4334a9042cb2cd69220468539c658ab514c1e0775c737d20cdbdc723</originalsourceid><addsrcrecordid>eNotkD1PwzAURS0EElXpzOqRJa397MTxWBUoRQUkWmbLsZ1iyEexkyH_npQyPd2no6urg9AtJfOUAl34r4PRcyAU5owRuEATIkWWSE74JZoAgEyY5PIazWL0BSFZmsucsQl6fnF1Gwa8apvYBe0bZ_HydT_mqm0GvBti52pctgHvdfzGO_PpbF_55oB9g9fvm_uRrI99N35u0FWpq-hm_3eKPh4f9qunZPu23qyW28RQyiHJaUlLKFLLGeNaEg6mAGMzCUB4lqdMmnGdLlLKDXVEiNQIJiwQYwtrBLApujv3HkP707vYqdpH46pKN67to6KZEFKmhGYjujijJrQxBleqY_C1DoOiRJ3EqT9x6iROncSxX82GX8k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1677995016</pqid></control><display><type>article</type><title>Memory Constrained ANT Colony System for Task Scheduling in GRID Computing</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Kokilavani, T</creator><creatorcontrib>Kokilavani, T</creatorcontrib><description>Grid computing solves the increasing need of scientific, engineering and research problems. It combines the geographically distributed resources to solve a computation intensive problem which cannot be solved using a single resource. Resource sharing requires more optimized algorithmic structure, otherwise the response time is increased and the resource utilization is reduced. In order to avoid such reduction in the performance of the grid system, an optimal resource sharing algorithm is required. The ACO solves many engineering problems and provides optimal result which includes Travelling Salesman Problem, Network Routing, and Scheduling. This paper proposes Load Shared Ant Colony Optimization (LSACO) which shares the load among the available resources. The proposed method considers memory requirement as a parameter to distribute the load among Grid resources. LSACO reduces the overall response time and increases the resource utilization and number of tasks scheduled. The proposed method has been tested for different types of tasks and resources.</description><identifier>ISSN: 2229-3949</identifier><identifier>EISSN: 0976-9404</identifier><identifier>DOI: 10.5121/ijgca.2012.3302</identifier><language>eng</language><subject>Algorithms ; Ant colony optimization ; Computational grids ; Optimization ; Resources utilization ; Response time ; Routing (telecommunications) ; Scheduling ; Tasks</subject><ispartof>International Journal of Grid Computing & Applications, 2012-09, Vol.3 (3), p.11-20</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Kokilavani, T</creatorcontrib><title>Memory Constrained ANT Colony System for Task Scheduling in GRID Computing</title><title>International Journal of Grid Computing & Applications</title><description>Grid computing solves the increasing need of scientific, engineering and research problems. It combines the geographically distributed resources to solve a computation intensive problem which cannot be solved using a single resource. Resource sharing requires more optimized algorithmic structure, otherwise the response time is increased and the resource utilization is reduced. In order to avoid such reduction in the performance of the grid system, an optimal resource sharing algorithm is required. The ACO solves many engineering problems and provides optimal result which includes Travelling Salesman Problem, Network Routing, and Scheduling. This paper proposes Load Shared Ant Colony Optimization (LSACO) which shares the load among the available resources. The proposed method considers memory requirement as a parameter to distribute the load among Grid resources. LSACO reduces the overall response time and increases the resource utilization and number of tasks scheduled. The proposed method has been tested for different types of tasks and resources.</description><subject>Algorithms</subject><subject>Ant colony optimization</subject><subject>Computational grids</subject><subject>Optimization</subject><subject>Resources utilization</subject><subject>Response time</subject><subject>Routing (telecommunications)</subject><subject>Scheduling</subject><subject>Tasks</subject><issn>2229-3949</issn><issn>0976-9404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNotkD1PwzAURS0EElXpzOqRJa397MTxWBUoRQUkWmbLsZ1iyEexkyH_npQyPd2no6urg9AtJfOUAl34r4PRcyAU5owRuEATIkWWSE74JZoAgEyY5PIazWL0BSFZmsucsQl6fnF1Gwa8apvYBe0bZ_HydT_mqm0GvBti52pctgHvdfzGO_PpbF_55oB9g9fvm_uRrI99N35u0FWpq-hm_3eKPh4f9qunZPu23qyW28RQyiHJaUlLKFLLGeNaEg6mAGMzCUB4lqdMmnGdLlLKDXVEiNQIJiwQYwtrBLApujv3HkP707vYqdpH46pKN67to6KZEFKmhGYjujijJrQxBleqY_C1DoOiRJ3EqT9x6iROncSxX82GX8k</recordid><startdate>20120930</startdate><enddate>20120930</enddate><creator>Kokilavani, T</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20120930</creationdate><title>Memory Constrained ANT Colony System for Task Scheduling in GRID Computing</title><author>Kokilavani, T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1142-81f1f2b5d4334a9042cb2cd69220468539c658ab514c1e0775c737d20cdbdc723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Ant colony optimization</topic><topic>Computational grids</topic><topic>Optimization</topic><topic>Resources utilization</topic><topic>Response time</topic><topic>Routing (telecommunications)</topic><topic>Scheduling</topic><topic>Tasks</topic><toplevel>online_resources</toplevel><creatorcontrib>Kokilavani, T</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International Journal of Grid Computing & Applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kokilavani, T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Memory Constrained ANT Colony System for Task Scheduling in GRID Computing</atitle><jtitle>International Journal of Grid Computing & Applications</jtitle><date>2012-09-30</date><risdate>2012</risdate><volume>3</volume><issue>3</issue><spage>11</spage><epage>20</epage><pages>11-20</pages><issn>2229-3949</issn><eissn>0976-9404</eissn><abstract>Grid computing solves the increasing need of scientific, engineering and research problems. It combines the geographically distributed resources to solve a computation intensive problem which cannot be solved using a single resource. Resource sharing requires more optimized algorithmic structure, otherwise the response time is increased and the resource utilization is reduced. In order to avoid such reduction in the performance of the grid system, an optimal resource sharing algorithm is required. The ACO solves many engineering problems and provides optimal result which includes Travelling Salesman Problem, Network Routing, and Scheduling. This paper proposes Load Shared Ant Colony Optimization (LSACO) which shares the load among the available resources. The proposed method considers memory requirement as a parameter to distribute the load among Grid resources. LSACO reduces the overall response time and increases the resource utilization and number of tasks scheduled. The proposed method has been tested for different types of tasks and resources.</abstract><doi>10.5121/ijgca.2012.3302</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2229-3949 |
ispartof | International Journal of Grid Computing & Applications, 2012-09, Vol.3 (3), p.11-20 |
issn | 2229-3949 0976-9404 |
language | eng |
recordid | cdi_proquest_miscellaneous_1677995016 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Algorithms Ant colony optimization Computational grids Optimization Resources utilization Response time Routing (telecommunications) Scheduling Tasks |
title | Memory Constrained ANT Colony System for Task Scheduling in GRID Computing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T04%3A39%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Memory%20Constrained%20ANT%20Colony%20System%20for%20Task%20Scheduling%20in%20GRID%20Computing&rft.jtitle=International%20Journal%20of%20Grid%20Computing%20&%20Applications&rft.au=Kokilavani,%20T&rft.date=2012-09-30&rft.volume=3&rft.issue=3&rft.spage=11&rft.epage=20&rft.pages=11-20&rft.issn=2229-3949&rft.eissn=0976-9404&rft_id=info:doi/10.5121/ijgca.2012.3302&rft_dat=%3Cproquest_cross%3E1677995016%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1677995016&rft_id=info:pmid/&rfr_iscdi=true |