Memory Constrained ANT Colony System for Task Scheduling in GRID Computing

Grid computing solves the increasing need of scientific, engineering and research problems. It combines the geographically distributed resources to solve a computation intensive problem which cannot be solved using a single resource. Resource sharing requires more optimized algorithmic structure, ot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International Journal of Grid Computing & Applications 2012-09, Vol.3 (3), p.11-20
1. Verfasser: Kokilavani, T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20
container_issue 3
container_start_page 11
container_title International Journal of Grid Computing & Applications
container_volume 3
creator Kokilavani, T
description Grid computing solves the increasing need of scientific, engineering and research problems. It combines the geographically distributed resources to solve a computation intensive problem which cannot be solved using a single resource. Resource sharing requires more optimized algorithmic structure, otherwise the response time is increased and the resource utilization is reduced. In order to avoid such reduction in the performance of the grid system, an optimal resource sharing algorithm is required. The ACO solves many engineering problems and provides optimal result which includes Travelling Salesman Problem, Network Routing, and Scheduling. This paper proposes Load Shared Ant Colony Optimization (LSACO) which shares the load among the available resources. The proposed method considers memory requirement as a parameter to distribute the load among Grid resources. LSACO reduces the overall response time and increases the resource utilization and number of tasks scheduled. The proposed method has been tested for different types of tasks and resources.
doi_str_mv 10.5121/ijgca.2012.3302
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677995016</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1677995016</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1142-81f1f2b5d4334a9042cb2cd69220468539c658ab514c1e0775c737d20cdbdc723</originalsourceid><addsrcrecordid>eNotkD1PwzAURS0EElXpzOqRJa397MTxWBUoRQUkWmbLsZ1iyEexkyH_npQyPd2no6urg9AtJfOUAl34r4PRcyAU5owRuEATIkWWSE74JZoAgEyY5PIazWL0BSFZmsucsQl6fnF1Gwa8apvYBe0bZ_HydT_mqm0GvBti52pctgHvdfzGO_PpbF_55oB9g9fvm_uRrI99N35u0FWpq-hm_3eKPh4f9qunZPu23qyW28RQyiHJaUlLKFLLGeNaEg6mAGMzCUB4lqdMmnGdLlLKDXVEiNQIJiwQYwtrBLApujv3HkP707vYqdpH46pKN67to6KZEFKmhGYjujijJrQxBleqY_C1DoOiRJ3EqT9x6iROncSxX82GX8k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1677995016</pqid></control><display><type>article</type><title>Memory Constrained ANT Colony System for Task Scheduling in GRID Computing</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Kokilavani, T</creator><creatorcontrib>Kokilavani, T</creatorcontrib><description>Grid computing solves the increasing need of scientific, engineering and research problems. It combines the geographically distributed resources to solve a computation intensive problem which cannot be solved using a single resource. Resource sharing requires more optimized algorithmic structure, otherwise the response time is increased and the resource utilization is reduced. In order to avoid such reduction in the performance of the grid system, an optimal resource sharing algorithm is required. The ACO solves many engineering problems and provides optimal result which includes Travelling Salesman Problem, Network Routing, and Scheduling. This paper proposes Load Shared Ant Colony Optimization (LSACO) which shares the load among the available resources. The proposed method considers memory requirement as a parameter to distribute the load among Grid resources. LSACO reduces the overall response time and increases the resource utilization and number of tasks scheduled. The proposed method has been tested for different types of tasks and resources.</description><identifier>ISSN: 2229-3949</identifier><identifier>EISSN: 0976-9404</identifier><identifier>DOI: 10.5121/ijgca.2012.3302</identifier><language>eng</language><subject>Algorithms ; Ant colony optimization ; Computational grids ; Optimization ; Resources utilization ; Response time ; Routing (telecommunications) ; Scheduling ; Tasks</subject><ispartof>International Journal of Grid Computing &amp; Applications, 2012-09, Vol.3 (3), p.11-20</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Kokilavani, T</creatorcontrib><title>Memory Constrained ANT Colony System for Task Scheduling in GRID Computing</title><title>International Journal of Grid Computing &amp; Applications</title><description>Grid computing solves the increasing need of scientific, engineering and research problems. It combines the geographically distributed resources to solve a computation intensive problem which cannot be solved using a single resource. Resource sharing requires more optimized algorithmic structure, otherwise the response time is increased and the resource utilization is reduced. In order to avoid such reduction in the performance of the grid system, an optimal resource sharing algorithm is required. The ACO solves many engineering problems and provides optimal result which includes Travelling Salesman Problem, Network Routing, and Scheduling. This paper proposes Load Shared Ant Colony Optimization (LSACO) which shares the load among the available resources. The proposed method considers memory requirement as a parameter to distribute the load among Grid resources. LSACO reduces the overall response time and increases the resource utilization and number of tasks scheduled. The proposed method has been tested for different types of tasks and resources.</description><subject>Algorithms</subject><subject>Ant colony optimization</subject><subject>Computational grids</subject><subject>Optimization</subject><subject>Resources utilization</subject><subject>Response time</subject><subject>Routing (telecommunications)</subject><subject>Scheduling</subject><subject>Tasks</subject><issn>2229-3949</issn><issn>0976-9404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNotkD1PwzAURS0EElXpzOqRJa397MTxWBUoRQUkWmbLsZ1iyEexkyH_npQyPd2no6urg9AtJfOUAl34r4PRcyAU5owRuEATIkWWSE74JZoAgEyY5PIazWL0BSFZmsucsQl6fnF1Gwa8apvYBe0bZ_HydT_mqm0GvBti52pctgHvdfzGO_PpbF_55oB9g9fvm_uRrI99N35u0FWpq-hm_3eKPh4f9qunZPu23qyW28RQyiHJaUlLKFLLGeNaEg6mAGMzCUB4lqdMmnGdLlLKDXVEiNQIJiwQYwtrBLApujv3HkP707vYqdpH46pKN67to6KZEFKmhGYjujijJrQxBleqY_C1DoOiRJ3EqT9x6iROncSxX82GX8k</recordid><startdate>20120930</startdate><enddate>20120930</enddate><creator>Kokilavani, T</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20120930</creationdate><title>Memory Constrained ANT Colony System for Task Scheduling in GRID Computing</title><author>Kokilavani, T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1142-81f1f2b5d4334a9042cb2cd69220468539c658ab514c1e0775c737d20cdbdc723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Ant colony optimization</topic><topic>Computational grids</topic><topic>Optimization</topic><topic>Resources utilization</topic><topic>Response time</topic><topic>Routing (telecommunications)</topic><topic>Scheduling</topic><topic>Tasks</topic><toplevel>online_resources</toplevel><creatorcontrib>Kokilavani, T</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International Journal of Grid Computing &amp; Applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kokilavani, T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Memory Constrained ANT Colony System for Task Scheduling in GRID Computing</atitle><jtitle>International Journal of Grid Computing &amp; Applications</jtitle><date>2012-09-30</date><risdate>2012</risdate><volume>3</volume><issue>3</issue><spage>11</spage><epage>20</epage><pages>11-20</pages><issn>2229-3949</issn><eissn>0976-9404</eissn><abstract>Grid computing solves the increasing need of scientific, engineering and research problems. It combines the geographically distributed resources to solve a computation intensive problem which cannot be solved using a single resource. Resource sharing requires more optimized algorithmic structure, otherwise the response time is increased and the resource utilization is reduced. In order to avoid such reduction in the performance of the grid system, an optimal resource sharing algorithm is required. The ACO solves many engineering problems and provides optimal result which includes Travelling Salesman Problem, Network Routing, and Scheduling. This paper proposes Load Shared Ant Colony Optimization (LSACO) which shares the load among the available resources. The proposed method considers memory requirement as a parameter to distribute the load among Grid resources. LSACO reduces the overall response time and increases the resource utilization and number of tasks scheduled. The proposed method has been tested for different types of tasks and resources.</abstract><doi>10.5121/ijgca.2012.3302</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2229-3949
ispartof International Journal of Grid Computing & Applications, 2012-09, Vol.3 (3), p.11-20
issn 2229-3949
0976-9404
language eng
recordid cdi_proquest_miscellaneous_1677995016
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithms
Ant colony optimization
Computational grids
Optimization
Resources utilization
Response time
Routing (telecommunications)
Scheduling
Tasks
title Memory Constrained ANT Colony System for Task Scheduling in GRID Computing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T04%3A39%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Memory%20Constrained%20ANT%20Colony%20System%20for%20Task%20Scheduling%20in%20GRID%20Computing&rft.jtitle=International%20Journal%20of%20Grid%20Computing%20&%20Applications&rft.au=Kokilavani,%20T&rft.date=2012-09-30&rft.volume=3&rft.issue=3&rft.spage=11&rft.epage=20&rft.pages=11-20&rft.issn=2229-3949&rft.eissn=0976-9404&rft_id=info:doi/10.5121/ijgca.2012.3302&rft_dat=%3Cproquest_cross%3E1677995016%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1677995016&rft_id=info:pmid/&rfr_iscdi=true