Battery internal temperature estimation by combined impedance and surface temperature measurement
A new approach, suitable for real-time implementation, is introduced for estimation of non-uniform internal temperature distribution in cylindrical lithium-ion cells. A radial 1-D model is used to estimate the distribution using two inputs: the real or imaginary part of the electrochemical impedance...
Gespeichert in:
Veröffentlicht in: | Journal of power sources 2014-11, Vol.265, p.254-261 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 261 |
---|---|
container_issue | |
container_start_page | 254 |
container_title | Journal of power sources |
container_volume | 265 |
creator | Richardson, Robert R. Ireland, Peter T. Howey, David A. |
description | A new approach, suitable for real-time implementation, is introduced for estimation of non-uniform internal temperature distribution in cylindrical lithium-ion cells. A radial 1-D model is used to estimate the distribution using two inputs: the real or imaginary part of the electrochemical impedance of the cell at a single frequency, and the surface temperature. The approach does not require knowledge of cell thermal properties, heat generation or thermal boundary conditions.
The model is validated experimentally, the first time for such an approach, using a cylindrical 26650 cell fitted with an internal thermocouple. The cell is heated by applying (1) current pulses of up to ±20 A and (2) a 3500 s HEV drive cycle current profile, whilst monitoring the surface and core temperatures and measuring impedance at 215 Hz. During the drive cycle test, the battery core temperature increases by 20 °C and the surface temperature increases by 14 °C. The mean absolute error in the predicted maximum temperature throughout the cycle is 0.6 °C (3% of the total core temperature increase), in contrast to a mean absolute error of 2.6 °C if the temperature is assumed to be uniform (13% of the total core temperature increase).
•Method introduced for estimating cylindrical Li-ion cell temperature distribution.•Impedance measurement alone shown to underestimate maximum internal temperature.•The new method combines impedance with surface temperature measurements.•Method validated experimentally for the first time with an internal thermocouple.•The method is efficient enough to be implemented in a battery management system. |
doi_str_mv | 10.1016/j.jpowsour.2014.04.129 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677991334</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378775314006302</els_id><sourcerecordid>1567106248</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-ae87afea6f78b7ab09b83c502959c1ba88df49380a04d5ebcd44f4d296ace13a3</originalsourceid><addsrcrecordid>eNqFkE1r3DAQhkVIoJuPv1B8KfRiR7JkS7q1CWkTWMglOYuxNAYZf2wkOWX_fbRsUnLLacTwvPOKh5DvjFaMsvZ6qIbd8i8ua6hqykRFRcVqfUI2TEle1rJpTsmGcqlKKRv-jZzHOFBKGZN0Q-AGUsKwL_ycxwxjkXDaYYC0BiwwJj9B8stcdPvCLlPnZ3SFz4SD2WIBsyviGnrI78_BCSGvccI5XZKzHsaIV-_zgjz_uXu6vS-3j38fbn9vSyuETiWgktAjtL1UnYSO6k5x29BaN9qyDpRyvdBcUaDCNdhZJ0QvXK3b3M048Avy83h3F5aXNf_cTD5aHEeYcVmjYa2UWjPOxddo00pG21qojLZH1IYlxoC92YWsJOwNo-ag3wzmQ7856DdUmKw_B3-8d0C0MPYh-_Lxf7pWDeOiZZn7deQwu3n1GEy0HrNb5wPaZNziv6p6A_hWof0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1567106248</pqid></control><display><type>article</type><title>Battery internal temperature estimation by combined impedance and surface temperature measurement</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Richardson, Robert R. ; Ireland, Peter T. ; Howey, David A.</creator><creatorcontrib>Richardson, Robert R. ; Ireland, Peter T. ; Howey, David A.</creatorcontrib><description>A new approach, suitable for real-time implementation, is introduced for estimation of non-uniform internal temperature distribution in cylindrical lithium-ion cells. A radial 1-D model is used to estimate the distribution using two inputs: the real or imaginary part of the electrochemical impedance of the cell at a single frequency, and the surface temperature. The approach does not require knowledge of cell thermal properties, heat generation or thermal boundary conditions.
The model is validated experimentally, the first time for such an approach, using a cylindrical 26650 cell fitted with an internal thermocouple. The cell is heated by applying (1) current pulses of up to ±20 A and (2) a 3500 s HEV drive cycle current profile, whilst monitoring the surface and core temperatures and measuring impedance at 215 Hz. During the drive cycle test, the battery core temperature increases by 20 °C and the surface temperature increases by 14 °C. The mean absolute error in the predicted maximum temperature throughout the cycle is 0.6 °C (3% of the total core temperature increase), in contrast to a mean absolute error of 2.6 °C if the temperature is assumed to be uniform (13% of the total core temperature increase).
•Method introduced for estimating cylindrical Li-ion cell temperature distribution.•Impedance measurement alone shown to underestimate maximum internal temperature.•The new method combines impedance with surface temperature measurements.•Method validated experimentally for the first time with an internal thermocouple.•The method is efficient enough to be implemented in a battery management system.</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/j.jpowsour.2014.04.129</identifier><identifier>CODEN: JPSODZ</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Battery ; Battery management system ; Direct energy conversion and energy accumulation ; Electric cells ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Electrochemical impedance spectroscopy ; Errors ; Estimates ; Exact sciences and technology ; Impedance ; Lithium-ion ; Surface temperature ; Temperature ; Thermal properties ; Thermal runaway ; Thermocouples</subject><ispartof>Journal of power sources, 2014-11, Vol.265, p.254-261</ispartof><rights>2014 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-ae87afea6f78b7ab09b83c502959c1ba88df49380a04d5ebcd44f4d296ace13a3</citedby><cites>FETCH-LOGICAL-c449t-ae87afea6f78b7ab09b83c502959c1ba88df49380a04d5ebcd44f4d296ace13a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jpowsour.2014.04.129$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28513461$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Richardson, Robert R.</creatorcontrib><creatorcontrib>Ireland, Peter T.</creatorcontrib><creatorcontrib>Howey, David A.</creatorcontrib><title>Battery internal temperature estimation by combined impedance and surface temperature measurement</title><title>Journal of power sources</title><description>A new approach, suitable for real-time implementation, is introduced for estimation of non-uniform internal temperature distribution in cylindrical lithium-ion cells. A radial 1-D model is used to estimate the distribution using two inputs: the real or imaginary part of the electrochemical impedance of the cell at a single frequency, and the surface temperature. The approach does not require knowledge of cell thermal properties, heat generation or thermal boundary conditions.
The model is validated experimentally, the first time for such an approach, using a cylindrical 26650 cell fitted with an internal thermocouple. The cell is heated by applying (1) current pulses of up to ±20 A and (2) a 3500 s HEV drive cycle current profile, whilst monitoring the surface and core temperatures and measuring impedance at 215 Hz. During the drive cycle test, the battery core temperature increases by 20 °C and the surface temperature increases by 14 °C. The mean absolute error in the predicted maximum temperature throughout the cycle is 0.6 °C (3% of the total core temperature increase), in contrast to a mean absolute error of 2.6 °C if the temperature is assumed to be uniform (13% of the total core temperature increase).
•Method introduced for estimating cylindrical Li-ion cell temperature distribution.•Impedance measurement alone shown to underestimate maximum internal temperature.•The new method combines impedance with surface temperature measurements.•Method validated experimentally for the first time with an internal thermocouple.•The method is efficient enough to be implemented in a battery management system.</description><subject>Applied sciences</subject><subject>Battery</subject><subject>Battery management system</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electric cells</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Errors</subject><subject>Estimates</subject><subject>Exact sciences and technology</subject><subject>Impedance</subject><subject>Lithium-ion</subject><subject>Surface temperature</subject><subject>Temperature</subject><subject>Thermal properties</subject><subject>Thermal runaway</subject><subject>Thermocouples</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkE1r3DAQhkVIoJuPv1B8KfRiR7JkS7q1CWkTWMglOYuxNAYZf2wkOWX_fbRsUnLLacTwvPOKh5DvjFaMsvZ6qIbd8i8ua6hqykRFRcVqfUI2TEle1rJpTsmGcqlKKRv-jZzHOFBKGZN0Q-AGUsKwL_ycxwxjkXDaYYC0BiwwJj9B8stcdPvCLlPnZ3SFz4SD2WIBsyviGnrI78_BCSGvccI5XZKzHsaIV-_zgjz_uXu6vS-3j38fbn9vSyuETiWgktAjtL1UnYSO6k5x29BaN9qyDpRyvdBcUaDCNdhZJ0QvXK3b3M048Avy83h3F5aXNf_cTD5aHEeYcVmjYa2UWjPOxddo00pG21qojLZH1IYlxoC92YWsJOwNo-ag3wzmQ7856DdUmKw_B3-8d0C0MPYh-_Lxf7pWDeOiZZn7deQwu3n1GEy0HrNb5wPaZNziv6p6A_hWof0</recordid><startdate>20141101</startdate><enddate>20141101</enddate><creator>Richardson, Robert R.</creator><creator>Ireland, Peter T.</creator><creator>Howey, David A.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20141101</creationdate><title>Battery internal temperature estimation by combined impedance and surface temperature measurement</title><author>Richardson, Robert R. ; Ireland, Peter T. ; Howey, David A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-ae87afea6f78b7ab09b83c502959c1ba88df49380a04d5ebcd44f4d296ace13a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Battery</topic><topic>Battery management system</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electric cells</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Errors</topic><topic>Estimates</topic><topic>Exact sciences and technology</topic><topic>Impedance</topic><topic>Lithium-ion</topic><topic>Surface temperature</topic><topic>Temperature</topic><topic>Thermal properties</topic><topic>Thermal runaway</topic><topic>Thermocouples</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Richardson, Robert R.</creatorcontrib><creatorcontrib>Ireland, Peter T.</creatorcontrib><creatorcontrib>Howey, David A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Richardson, Robert R.</au><au>Ireland, Peter T.</au><au>Howey, David A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Battery internal temperature estimation by combined impedance and surface temperature measurement</atitle><jtitle>Journal of power sources</jtitle><date>2014-11-01</date><risdate>2014</risdate><volume>265</volume><spage>254</spage><epage>261</epage><pages>254-261</pages><issn>0378-7753</issn><eissn>1873-2755</eissn><coden>JPSODZ</coden><abstract>A new approach, suitable for real-time implementation, is introduced for estimation of non-uniform internal temperature distribution in cylindrical lithium-ion cells. A radial 1-D model is used to estimate the distribution using two inputs: the real or imaginary part of the electrochemical impedance of the cell at a single frequency, and the surface temperature. The approach does not require knowledge of cell thermal properties, heat generation or thermal boundary conditions.
The model is validated experimentally, the first time for such an approach, using a cylindrical 26650 cell fitted with an internal thermocouple. The cell is heated by applying (1) current pulses of up to ±20 A and (2) a 3500 s HEV drive cycle current profile, whilst monitoring the surface and core temperatures and measuring impedance at 215 Hz. During the drive cycle test, the battery core temperature increases by 20 °C and the surface temperature increases by 14 °C. The mean absolute error in the predicted maximum temperature throughout the cycle is 0.6 °C (3% of the total core temperature increase), in contrast to a mean absolute error of 2.6 °C if the temperature is assumed to be uniform (13% of the total core temperature increase).
•Method introduced for estimating cylindrical Li-ion cell temperature distribution.•Impedance measurement alone shown to underestimate maximum internal temperature.•The new method combines impedance with surface temperature measurements.•Method validated experimentally for the first time with an internal thermocouple.•The method is efficient enough to be implemented in a battery management system.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jpowsour.2014.04.129</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-7753 |
ispartof | Journal of power sources, 2014-11, Vol.265, p.254-261 |
issn | 0378-7753 1873-2755 |
language | eng |
recordid | cdi_proquest_miscellaneous_1677991334 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Applied sciences Battery Battery management system Direct energy conversion and energy accumulation Electric cells Electrical engineering. Electrical power engineering Electrical power engineering Electrochemical conversion: primary and secondary batteries, fuel cells Electrochemical impedance spectroscopy Errors Estimates Exact sciences and technology Impedance Lithium-ion Surface temperature Temperature Thermal properties Thermal runaway Thermocouples |
title | Battery internal temperature estimation by combined impedance and surface temperature measurement |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T06%3A06%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Battery%20internal%20temperature%20estimation%20by%20combined%20impedance%20and%20surface%20temperature%20measurement&rft.jtitle=Journal%20of%20power%20sources&rft.au=Richardson,%20Robert%20R.&rft.date=2014-11-01&rft.volume=265&rft.spage=254&rft.epage=261&rft.pages=254-261&rft.issn=0378-7753&rft.eissn=1873-2755&rft.coden=JPSODZ&rft_id=info:doi/10.1016/j.jpowsour.2014.04.129&rft_dat=%3Cproquest_cross%3E1567106248%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1567106248&rft_id=info:pmid/&rft_els_id=S0378775314006302&rfr_iscdi=true |