Battery internal temperature estimation by combined impedance and surface temperature measurement

A new approach, suitable for real-time implementation, is introduced for estimation of non-uniform internal temperature distribution in cylindrical lithium-ion cells. A radial 1-D model is used to estimate the distribution using two inputs: the real or imaginary part of the electrochemical impedance...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of power sources 2014-11, Vol.265, p.254-261
Hauptverfasser: Richardson, Robert R., Ireland, Peter T., Howey, David A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 261
container_issue
container_start_page 254
container_title Journal of power sources
container_volume 265
creator Richardson, Robert R.
Ireland, Peter T.
Howey, David A.
description A new approach, suitable for real-time implementation, is introduced for estimation of non-uniform internal temperature distribution in cylindrical lithium-ion cells. A radial 1-D model is used to estimate the distribution using two inputs: the real or imaginary part of the electrochemical impedance of the cell at a single frequency, and the surface temperature. The approach does not require knowledge of cell thermal properties, heat generation or thermal boundary conditions. The model is validated experimentally, the first time for such an approach, using a cylindrical 26650 cell fitted with an internal thermocouple. The cell is heated by applying (1) current pulses of up to ±20 A and (2) a 3500 s HEV drive cycle current profile, whilst monitoring the surface and core temperatures and measuring impedance at 215 Hz. During the drive cycle test, the battery core temperature increases by 20 °C and the surface temperature increases by 14 °C. The mean absolute error in the predicted maximum temperature throughout the cycle is 0.6 °C (3% of the total core temperature increase), in contrast to a mean absolute error of 2.6 °C if the temperature is assumed to be uniform (13% of the total core temperature increase). •Method introduced for estimating cylindrical Li-ion cell temperature distribution.•Impedance measurement alone shown to underestimate maximum internal temperature.•The new method combines impedance with surface temperature measurements.•Method validated experimentally for the first time with an internal thermocouple.•The method is efficient enough to be implemented in a battery management system.
doi_str_mv 10.1016/j.jpowsour.2014.04.129
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677991334</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378775314006302</els_id><sourcerecordid>1567106248</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-ae87afea6f78b7ab09b83c502959c1ba88df49380a04d5ebcd44f4d296ace13a3</originalsourceid><addsrcrecordid>eNqFkE1r3DAQhkVIoJuPv1B8KfRiR7JkS7q1CWkTWMglOYuxNAYZf2wkOWX_fbRsUnLLacTwvPOKh5DvjFaMsvZ6qIbd8i8ua6hqykRFRcVqfUI2TEle1rJpTsmGcqlKKRv-jZzHOFBKGZN0Q-AGUsKwL_ycxwxjkXDaYYC0BiwwJj9B8stcdPvCLlPnZ3SFz4SD2WIBsyviGnrI78_BCSGvccI5XZKzHsaIV-_zgjz_uXu6vS-3j38fbn9vSyuETiWgktAjtL1UnYSO6k5x29BaN9qyDpRyvdBcUaDCNdhZJ0QvXK3b3M048Avy83h3F5aXNf_cTD5aHEeYcVmjYa2UWjPOxddo00pG21qojLZH1IYlxoC92YWsJOwNo-ag3wzmQ7856DdUmKw_B3-8d0C0MPYh-_Lxf7pWDeOiZZn7deQwu3n1GEy0HrNb5wPaZNziv6p6A_hWof0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1567106248</pqid></control><display><type>article</type><title>Battery internal temperature estimation by combined impedance and surface temperature measurement</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Richardson, Robert R. ; Ireland, Peter T. ; Howey, David A.</creator><creatorcontrib>Richardson, Robert R. ; Ireland, Peter T. ; Howey, David A.</creatorcontrib><description>A new approach, suitable for real-time implementation, is introduced for estimation of non-uniform internal temperature distribution in cylindrical lithium-ion cells. A radial 1-D model is used to estimate the distribution using two inputs: the real or imaginary part of the electrochemical impedance of the cell at a single frequency, and the surface temperature. The approach does not require knowledge of cell thermal properties, heat generation or thermal boundary conditions. The model is validated experimentally, the first time for such an approach, using a cylindrical 26650 cell fitted with an internal thermocouple. The cell is heated by applying (1) current pulses of up to ±20 A and (2) a 3500 s HEV drive cycle current profile, whilst monitoring the surface and core temperatures and measuring impedance at 215 Hz. During the drive cycle test, the battery core temperature increases by 20 °C and the surface temperature increases by 14 °C. The mean absolute error in the predicted maximum temperature throughout the cycle is 0.6 °C (3% of the total core temperature increase), in contrast to a mean absolute error of 2.6 °C if the temperature is assumed to be uniform (13% of the total core temperature increase). •Method introduced for estimating cylindrical Li-ion cell temperature distribution.•Impedance measurement alone shown to underestimate maximum internal temperature.•The new method combines impedance with surface temperature measurements.•Method validated experimentally for the first time with an internal thermocouple.•The method is efficient enough to be implemented in a battery management system.</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/j.jpowsour.2014.04.129</identifier><identifier>CODEN: JPSODZ</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Battery ; Battery management system ; Direct energy conversion and energy accumulation ; Electric cells ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Electrochemical impedance spectroscopy ; Errors ; Estimates ; Exact sciences and technology ; Impedance ; Lithium-ion ; Surface temperature ; Temperature ; Thermal properties ; Thermal runaway ; Thermocouples</subject><ispartof>Journal of power sources, 2014-11, Vol.265, p.254-261</ispartof><rights>2014 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-ae87afea6f78b7ab09b83c502959c1ba88df49380a04d5ebcd44f4d296ace13a3</citedby><cites>FETCH-LOGICAL-c449t-ae87afea6f78b7ab09b83c502959c1ba88df49380a04d5ebcd44f4d296ace13a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jpowsour.2014.04.129$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28513461$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Richardson, Robert R.</creatorcontrib><creatorcontrib>Ireland, Peter T.</creatorcontrib><creatorcontrib>Howey, David A.</creatorcontrib><title>Battery internal temperature estimation by combined impedance and surface temperature measurement</title><title>Journal of power sources</title><description>A new approach, suitable for real-time implementation, is introduced for estimation of non-uniform internal temperature distribution in cylindrical lithium-ion cells. A radial 1-D model is used to estimate the distribution using two inputs: the real or imaginary part of the electrochemical impedance of the cell at a single frequency, and the surface temperature. The approach does not require knowledge of cell thermal properties, heat generation or thermal boundary conditions. The model is validated experimentally, the first time for such an approach, using a cylindrical 26650 cell fitted with an internal thermocouple. The cell is heated by applying (1) current pulses of up to ±20 A and (2) a 3500 s HEV drive cycle current profile, whilst monitoring the surface and core temperatures and measuring impedance at 215 Hz. During the drive cycle test, the battery core temperature increases by 20 °C and the surface temperature increases by 14 °C. The mean absolute error in the predicted maximum temperature throughout the cycle is 0.6 °C (3% of the total core temperature increase), in contrast to a mean absolute error of 2.6 °C if the temperature is assumed to be uniform (13% of the total core temperature increase). •Method introduced for estimating cylindrical Li-ion cell temperature distribution.•Impedance measurement alone shown to underestimate maximum internal temperature.•The new method combines impedance with surface temperature measurements.•Method validated experimentally for the first time with an internal thermocouple.•The method is efficient enough to be implemented in a battery management system.</description><subject>Applied sciences</subject><subject>Battery</subject><subject>Battery management system</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electric cells</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Errors</subject><subject>Estimates</subject><subject>Exact sciences and technology</subject><subject>Impedance</subject><subject>Lithium-ion</subject><subject>Surface temperature</subject><subject>Temperature</subject><subject>Thermal properties</subject><subject>Thermal runaway</subject><subject>Thermocouples</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkE1r3DAQhkVIoJuPv1B8KfRiR7JkS7q1CWkTWMglOYuxNAYZf2wkOWX_fbRsUnLLacTwvPOKh5DvjFaMsvZ6qIbd8i8ua6hqykRFRcVqfUI2TEle1rJpTsmGcqlKKRv-jZzHOFBKGZN0Q-AGUsKwL_ycxwxjkXDaYYC0BiwwJj9B8stcdPvCLlPnZ3SFz4SD2WIBsyviGnrI78_BCSGvccI5XZKzHsaIV-_zgjz_uXu6vS-3j38fbn9vSyuETiWgktAjtL1UnYSO6k5x29BaN9qyDpRyvdBcUaDCNdhZJ0QvXK3b3M048Avy83h3F5aXNf_cTD5aHEeYcVmjYa2UWjPOxddo00pG21qojLZH1IYlxoC92YWsJOwNo-ag3wzmQ7856DdUmKw_B3-8d0C0MPYh-_Lxf7pWDeOiZZn7deQwu3n1GEy0HrNb5wPaZNziv6p6A_hWof0</recordid><startdate>20141101</startdate><enddate>20141101</enddate><creator>Richardson, Robert R.</creator><creator>Ireland, Peter T.</creator><creator>Howey, David A.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20141101</creationdate><title>Battery internal temperature estimation by combined impedance and surface temperature measurement</title><author>Richardson, Robert R. ; Ireland, Peter T. ; Howey, David A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-ae87afea6f78b7ab09b83c502959c1ba88df49380a04d5ebcd44f4d296ace13a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Battery</topic><topic>Battery management system</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electric cells</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Errors</topic><topic>Estimates</topic><topic>Exact sciences and technology</topic><topic>Impedance</topic><topic>Lithium-ion</topic><topic>Surface temperature</topic><topic>Temperature</topic><topic>Thermal properties</topic><topic>Thermal runaway</topic><topic>Thermocouples</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Richardson, Robert R.</creatorcontrib><creatorcontrib>Ireland, Peter T.</creatorcontrib><creatorcontrib>Howey, David A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Richardson, Robert R.</au><au>Ireland, Peter T.</au><au>Howey, David A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Battery internal temperature estimation by combined impedance and surface temperature measurement</atitle><jtitle>Journal of power sources</jtitle><date>2014-11-01</date><risdate>2014</risdate><volume>265</volume><spage>254</spage><epage>261</epage><pages>254-261</pages><issn>0378-7753</issn><eissn>1873-2755</eissn><coden>JPSODZ</coden><abstract>A new approach, suitable for real-time implementation, is introduced for estimation of non-uniform internal temperature distribution in cylindrical lithium-ion cells. A radial 1-D model is used to estimate the distribution using two inputs: the real or imaginary part of the electrochemical impedance of the cell at a single frequency, and the surface temperature. The approach does not require knowledge of cell thermal properties, heat generation or thermal boundary conditions. The model is validated experimentally, the first time for such an approach, using a cylindrical 26650 cell fitted with an internal thermocouple. The cell is heated by applying (1) current pulses of up to ±20 A and (2) a 3500 s HEV drive cycle current profile, whilst monitoring the surface and core temperatures and measuring impedance at 215 Hz. During the drive cycle test, the battery core temperature increases by 20 °C and the surface temperature increases by 14 °C. The mean absolute error in the predicted maximum temperature throughout the cycle is 0.6 °C (3% of the total core temperature increase), in contrast to a mean absolute error of 2.6 °C if the temperature is assumed to be uniform (13% of the total core temperature increase). •Method introduced for estimating cylindrical Li-ion cell temperature distribution.•Impedance measurement alone shown to underestimate maximum internal temperature.•The new method combines impedance with surface temperature measurements.•Method validated experimentally for the first time with an internal thermocouple.•The method is efficient enough to be implemented in a battery management system.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jpowsour.2014.04.129</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0378-7753
ispartof Journal of power sources, 2014-11, Vol.265, p.254-261
issn 0378-7753
1873-2755
language eng
recordid cdi_proquest_miscellaneous_1677991334
source Elsevier ScienceDirect Journals Complete
subjects Applied sciences
Battery
Battery management system
Direct energy conversion and energy accumulation
Electric cells
Electrical engineering. Electrical power engineering
Electrical power engineering
Electrochemical conversion: primary and secondary batteries, fuel cells
Electrochemical impedance spectroscopy
Errors
Estimates
Exact sciences and technology
Impedance
Lithium-ion
Surface temperature
Temperature
Thermal properties
Thermal runaway
Thermocouples
title Battery internal temperature estimation by combined impedance and surface temperature measurement
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T06%3A06%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Battery%20internal%20temperature%20estimation%20by%20combined%20impedance%20and%20surface%20temperature%20measurement&rft.jtitle=Journal%20of%20power%20sources&rft.au=Richardson,%20Robert%20R.&rft.date=2014-11-01&rft.volume=265&rft.spage=254&rft.epage=261&rft.pages=254-261&rft.issn=0378-7753&rft.eissn=1873-2755&rft.coden=JPSODZ&rft_id=info:doi/10.1016/j.jpowsour.2014.04.129&rft_dat=%3Cproquest_cross%3E1567106248%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1567106248&rft_id=info:pmid/&rft_els_id=S0378775314006302&rfr_iscdi=true