A successive three-point perturbation method for fast ray tracing in complex 2D and 3D geological models
This paper presents new 2D and 3D ray-tracing methods that can be applied to traveltime and ray path computations for transmitted, reflected and turning seismic waves in complex geologic models. The new ray-tracing scheme combines segmentally iterative ray tracing (SIRT) and pseudo-bending methods t...
Gespeichert in:
Veröffentlicht in: | Tectonophysics 2014-07, Vol.627, p.72-81 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 81 |
---|---|
container_issue | |
container_start_page | 72 |
container_title | Tectonophysics |
container_volume | 627 |
creator | Xu, Tao Li, Fei Wu, Zhenbo Wu, Chenglong Gao, Ergen Zhou, Bing Zhang, Zhongjie Xu, Guoming |
description | This paper presents new 2D and 3D ray-tracing methods that can be applied to traveltime and ray path computations for transmitted, reflected and turning seismic waves in complex geologic models. The new ray-tracing scheme combines segmentally iterative ray tracing (SIRT) and pseudo-bending methods to address both stratified and arbitrarily shaped block models. The new method robustly extends our previous constant block models and constant gradient block models to generally heterogeneous block models, and incorporates cubic splines or triangulated interfaces to boundaries of complex geological bodies. The method is thus more widely applicable to practical problems. A successive three-point perturbation scheme is formulated that iteratively updates the midpoints of a segment based on an initial ray path. The midpoints are corrected by applying first-order analytic formulae to locations of the midpoint inside the block or on the boundaries of the blocks, which are then updated with the pseudo-bending method and SIRT algorithm instead of the traditional iterative methods. Empirical applications, including an example addressing the Bohemian Massif, demonstrate that this successive three-point perturbation scheme successfully performs kinematic ray tracing in heterogeneous complex 2D and 3D media.
•Geologic model as an aggregate of arbitrarily shaped blocks;•Heterogeneous velocity distribution in each block;•Segmentally iterative ray tracing and pseudo-bending for ray-tracing;•Modeling scheme tested with CELEBRATION 2000 data in Bohemian Massif. |
doi_str_mv | 10.1016/j.tecto.2014.02.012 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677988727</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0040195114001127</els_id><sourcerecordid>1567072480</sourcerecordid><originalsourceid>FETCH-LOGICAL-a392t-15056687ec9591c96cf5dd274349e9872381d69f0c40501af17fff62c9fed4cc3</originalsourceid><addsrcrecordid>eNqFkUFv1DAQRi1EJZbSX8DFRy4JYyex4wOHqqWAVIkLnC13PN71KomD7a3ov2_KcobTXN77pNFj7L2AVoBQH49tJayplSD6FmQLQr5iOzFq03RSqddsB9BDI8wg3rC3pRwBQIlB7djhmpcTIpUSH4nXQyZq1hSXylfK9ZQfXI1p4TPVQ_I8pMyDK5Vn98RrdhiXPY8LxzSvE_3m8pa7xfPulu8pTWkf0U18Tp6m8o5dBDcVuvp7L9nPu88_br4299-_fLu5vm9cZ2RtxACDUqMmNIMRaBSGwXup-643ZEYtu1F4ZQJgDwMIF4QOISiJJpDvEbtL9uG8u-b060Sl2jkWpGlyC6VTsUJpbcZtSP8fHZQGLfsRNrQ7o5hTKZmCXXOcXX6yAuxLAnu0fxLYlwQWpN0SbNans7X9T4-Rsi0YaUHyMW-w9Sn-038G_QWQQg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1567072480</pqid></control><display><type>article</type><title>A successive three-point perturbation method for fast ray tracing in complex 2D and 3D geological models</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Xu, Tao ; Li, Fei ; Wu, Zhenbo ; Wu, Chenglong ; Gao, Ergen ; Zhou, Bing ; Zhang, Zhongjie ; Xu, Guoming</creator><creatorcontrib>Xu, Tao ; Li, Fei ; Wu, Zhenbo ; Wu, Chenglong ; Gao, Ergen ; Zhou, Bing ; Zhang, Zhongjie ; Xu, Guoming</creatorcontrib><description>This paper presents new 2D and 3D ray-tracing methods that can be applied to traveltime and ray path computations for transmitted, reflected and turning seismic waves in complex geologic models. The new ray-tracing scheme combines segmentally iterative ray tracing (SIRT) and pseudo-bending methods to address both stratified and arbitrarily shaped block models. The new method robustly extends our previous constant block models and constant gradient block models to generally heterogeneous block models, and incorporates cubic splines or triangulated interfaces to boundaries of complex geological bodies. The method is thus more widely applicable to practical problems. A successive three-point perturbation scheme is formulated that iteratively updates the midpoints of a segment based on an initial ray path. The midpoints are corrected by applying first-order analytic formulae to locations of the midpoint inside the block or on the boundaries of the blocks, which are then updated with the pseudo-bending method and SIRT algorithm instead of the traditional iterative methods. Empirical applications, including an example addressing the Bohemian Massif, demonstrate that this successive three-point perturbation scheme successfully performs kinematic ray tracing in heterogeneous complex 2D and 3D media.
•Geologic model as an aggregate of arbitrarily shaped blocks;•Heterogeneous velocity distribution in each block;•Segmentally iterative ray tracing and pseudo-bending for ray-tracing;•Modeling scheme tested with CELEBRATION 2000 data in Bohemian Massif.</description><identifier>ISSN: 0040-1951</identifier><identifier>EISSN: 1879-3266</identifier><identifier>DOI: 10.1016/j.tecto.2014.02.012</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>2D and 3D ; Block model ; Blocking ; Constants ; Geology ; Heterogeneous velocity ; Mathematical models ; Perturbation methods ; Ray tracing ; Three dimensional ; Three-point perturbation method ; Two dimensional</subject><ispartof>Tectonophysics, 2014-07, Vol.627, p.72-81</ispartof><rights>2014 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a392t-15056687ec9591c96cf5dd274349e9872381d69f0c40501af17fff62c9fed4cc3</citedby><cites>FETCH-LOGICAL-a392t-15056687ec9591c96cf5dd274349e9872381d69f0c40501af17fff62c9fed4cc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.tecto.2014.02.012$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Xu, Tao</creatorcontrib><creatorcontrib>Li, Fei</creatorcontrib><creatorcontrib>Wu, Zhenbo</creatorcontrib><creatorcontrib>Wu, Chenglong</creatorcontrib><creatorcontrib>Gao, Ergen</creatorcontrib><creatorcontrib>Zhou, Bing</creatorcontrib><creatorcontrib>Zhang, Zhongjie</creatorcontrib><creatorcontrib>Xu, Guoming</creatorcontrib><title>A successive three-point perturbation method for fast ray tracing in complex 2D and 3D geological models</title><title>Tectonophysics</title><description>This paper presents new 2D and 3D ray-tracing methods that can be applied to traveltime and ray path computations for transmitted, reflected and turning seismic waves in complex geologic models. The new ray-tracing scheme combines segmentally iterative ray tracing (SIRT) and pseudo-bending methods to address both stratified and arbitrarily shaped block models. The new method robustly extends our previous constant block models and constant gradient block models to generally heterogeneous block models, and incorporates cubic splines or triangulated interfaces to boundaries of complex geological bodies. The method is thus more widely applicable to practical problems. A successive three-point perturbation scheme is formulated that iteratively updates the midpoints of a segment based on an initial ray path. The midpoints are corrected by applying first-order analytic formulae to locations of the midpoint inside the block or on the boundaries of the blocks, which are then updated with the pseudo-bending method and SIRT algorithm instead of the traditional iterative methods. Empirical applications, including an example addressing the Bohemian Massif, demonstrate that this successive three-point perturbation scheme successfully performs kinematic ray tracing in heterogeneous complex 2D and 3D media.
•Geologic model as an aggregate of arbitrarily shaped blocks;•Heterogeneous velocity distribution in each block;•Segmentally iterative ray tracing and pseudo-bending for ray-tracing;•Modeling scheme tested with CELEBRATION 2000 data in Bohemian Massif.</description><subject>2D and 3D</subject><subject>Block model</subject><subject>Blocking</subject><subject>Constants</subject><subject>Geology</subject><subject>Heterogeneous velocity</subject><subject>Mathematical models</subject><subject>Perturbation methods</subject><subject>Ray tracing</subject><subject>Three dimensional</subject><subject>Three-point perturbation method</subject><subject>Two dimensional</subject><issn>0040-1951</issn><issn>1879-3266</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkUFv1DAQRi1EJZbSX8DFRy4JYyex4wOHqqWAVIkLnC13PN71KomD7a3ov2_KcobTXN77pNFj7L2AVoBQH49tJayplSD6FmQLQr5iOzFq03RSqddsB9BDI8wg3rC3pRwBQIlB7djhmpcTIpUSH4nXQyZq1hSXylfK9ZQfXI1p4TPVQ_I8pMyDK5Vn98RrdhiXPY8LxzSvE_3m8pa7xfPulu8pTWkf0U18Tp6m8o5dBDcVuvp7L9nPu88_br4299-_fLu5vm9cZ2RtxACDUqMmNIMRaBSGwXup-643ZEYtu1F4ZQJgDwMIF4QOISiJJpDvEbtL9uG8u-b060Sl2jkWpGlyC6VTsUJpbcZtSP8fHZQGLfsRNrQ7o5hTKZmCXXOcXX6yAuxLAnu0fxLYlwQWpN0SbNans7X9T4-Rsi0YaUHyMW-w9Sn-038G_QWQQg</recordid><startdate>20140713</startdate><enddate>20140713</enddate><creator>Xu, Tao</creator><creator>Li, Fei</creator><creator>Wu, Zhenbo</creator><creator>Wu, Chenglong</creator><creator>Gao, Ergen</creator><creator>Zhou, Bing</creator><creator>Zhang, Zhongjie</creator><creator>Xu, Guoming</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20140713</creationdate><title>A successive three-point perturbation method for fast ray tracing in complex 2D and 3D geological models</title><author>Xu, Tao ; Li, Fei ; Wu, Zhenbo ; Wu, Chenglong ; Gao, Ergen ; Zhou, Bing ; Zhang, Zhongjie ; Xu, Guoming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a392t-15056687ec9591c96cf5dd274349e9872381d69f0c40501af17fff62c9fed4cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>2D and 3D</topic><topic>Block model</topic><topic>Blocking</topic><topic>Constants</topic><topic>Geology</topic><topic>Heterogeneous velocity</topic><topic>Mathematical models</topic><topic>Perturbation methods</topic><topic>Ray tracing</topic><topic>Three dimensional</topic><topic>Three-point perturbation method</topic><topic>Two dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Tao</creatorcontrib><creatorcontrib>Li, Fei</creatorcontrib><creatorcontrib>Wu, Zhenbo</creatorcontrib><creatorcontrib>Wu, Chenglong</creatorcontrib><creatorcontrib>Gao, Ergen</creatorcontrib><creatorcontrib>Zhou, Bing</creatorcontrib><creatorcontrib>Zhang, Zhongjie</creatorcontrib><creatorcontrib>Xu, Guoming</creatorcontrib><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Tectonophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Tao</au><au>Li, Fei</au><au>Wu, Zhenbo</au><au>Wu, Chenglong</au><au>Gao, Ergen</au><au>Zhou, Bing</au><au>Zhang, Zhongjie</au><au>Xu, Guoming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A successive three-point perturbation method for fast ray tracing in complex 2D and 3D geological models</atitle><jtitle>Tectonophysics</jtitle><date>2014-07-13</date><risdate>2014</risdate><volume>627</volume><spage>72</spage><epage>81</epage><pages>72-81</pages><issn>0040-1951</issn><eissn>1879-3266</eissn><abstract>This paper presents new 2D and 3D ray-tracing methods that can be applied to traveltime and ray path computations for transmitted, reflected and turning seismic waves in complex geologic models. The new ray-tracing scheme combines segmentally iterative ray tracing (SIRT) and pseudo-bending methods to address both stratified and arbitrarily shaped block models. The new method robustly extends our previous constant block models and constant gradient block models to generally heterogeneous block models, and incorporates cubic splines or triangulated interfaces to boundaries of complex geological bodies. The method is thus more widely applicable to practical problems. A successive three-point perturbation scheme is formulated that iteratively updates the midpoints of a segment based on an initial ray path. The midpoints are corrected by applying first-order analytic formulae to locations of the midpoint inside the block or on the boundaries of the blocks, which are then updated with the pseudo-bending method and SIRT algorithm instead of the traditional iterative methods. Empirical applications, including an example addressing the Bohemian Massif, demonstrate that this successive three-point perturbation scheme successfully performs kinematic ray tracing in heterogeneous complex 2D and 3D media.
•Geologic model as an aggregate of arbitrarily shaped blocks;•Heterogeneous velocity distribution in each block;•Segmentally iterative ray tracing and pseudo-bending for ray-tracing;•Modeling scheme tested with CELEBRATION 2000 data in Bohemian Massif.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.tecto.2014.02.012</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0040-1951 |
ispartof | Tectonophysics, 2014-07, Vol.627, p.72-81 |
issn | 0040-1951 1879-3266 |
language | eng |
recordid | cdi_proquest_miscellaneous_1677988727 |
source | Elsevier ScienceDirect Journals Complete |
subjects | 2D and 3D Block model Blocking Constants Geology Heterogeneous velocity Mathematical models Perturbation methods Ray tracing Three dimensional Three-point perturbation method Two dimensional |
title | A successive three-point perturbation method for fast ray tracing in complex 2D and 3D geological models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T07%3A44%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20successive%20three-point%20perturbation%20method%20for%20fast%20ray%20tracing%20in%20complex%202D%20and%203D%20geological%20models&rft.jtitle=Tectonophysics&rft.au=Xu,%20Tao&rft.date=2014-07-13&rft.volume=627&rft.spage=72&rft.epage=81&rft.pages=72-81&rft.issn=0040-1951&rft.eissn=1879-3266&rft_id=info:doi/10.1016/j.tecto.2014.02.012&rft_dat=%3Cproquest_cross%3E1567072480%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1567072480&rft_id=info:pmid/&rft_els_id=S0040195114001127&rfr_iscdi=true |