A successive three-point perturbation method for fast ray tracing in complex 2D and 3D geological models

This paper presents new 2D and 3D ray-tracing methods that can be applied to traveltime and ray path computations for transmitted, reflected and turning seismic waves in complex geologic models. The new ray-tracing scheme combines segmentally iterative ray tracing (SIRT) and pseudo-bending methods t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Tectonophysics 2014-07, Vol.627, p.72-81
Hauptverfasser: Xu, Tao, Li, Fei, Wu, Zhenbo, Wu, Chenglong, Gao, Ergen, Zhou, Bing, Zhang, Zhongjie, Xu, Guoming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 81
container_issue
container_start_page 72
container_title Tectonophysics
container_volume 627
creator Xu, Tao
Li, Fei
Wu, Zhenbo
Wu, Chenglong
Gao, Ergen
Zhou, Bing
Zhang, Zhongjie
Xu, Guoming
description This paper presents new 2D and 3D ray-tracing methods that can be applied to traveltime and ray path computations for transmitted, reflected and turning seismic waves in complex geologic models. The new ray-tracing scheme combines segmentally iterative ray tracing (SIRT) and pseudo-bending methods to address both stratified and arbitrarily shaped block models. The new method robustly extends our previous constant block models and constant gradient block models to generally heterogeneous block models, and incorporates cubic splines or triangulated interfaces to boundaries of complex geological bodies. The method is thus more widely applicable to practical problems. A successive three-point perturbation scheme is formulated that iteratively updates the midpoints of a segment based on an initial ray path. The midpoints are corrected by applying first-order analytic formulae to locations of the midpoint inside the block or on the boundaries of the blocks, which are then updated with the pseudo-bending method and SIRT algorithm instead of the traditional iterative methods. Empirical applications, including an example addressing the Bohemian Massif, demonstrate that this successive three-point perturbation scheme successfully performs kinematic ray tracing in heterogeneous complex 2D and 3D media. •Geologic model as an aggregate of arbitrarily shaped blocks;•Heterogeneous velocity distribution in each block;•Segmentally iterative ray tracing and pseudo-bending for ray-tracing;•Modeling scheme tested with CELEBRATION 2000 data in Bohemian Massif.
doi_str_mv 10.1016/j.tecto.2014.02.012
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677988727</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0040195114001127</els_id><sourcerecordid>1567072480</sourcerecordid><originalsourceid>FETCH-LOGICAL-a392t-15056687ec9591c96cf5dd274349e9872381d69f0c40501af17fff62c9fed4cc3</originalsourceid><addsrcrecordid>eNqFkUFv1DAQRi1EJZbSX8DFRy4JYyex4wOHqqWAVIkLnC13PN71KomD7a3ov2_KcobTXN77pNFj7L2AVoBQH49tJayplSD6FmQLQr5iOzFq03RSqddsB9BDI8wg3rC3pRwBQIlB7djhmpcTIpUSH4nXQyZq1hSXylfK9ZQfXI1p4TPVQ_I8pMyDK5Vn98RrdhiXPY8LxzSvE_3m8pa7xfPulu8pTWkf0U18Tp6m8o5dBDcVuvp7L9nPu88_br4299-_fLu5vm9cZ2RtxACDUqMmNIMRaBSGwXup-643ZEYtu1F4ZQJgDwMIF4QOISiJJpDvEbtL9uG8u-b060Sl2jkWpGlyC6VTsUJpbcZtSP8fHZQGLfsRNrQ7o5hTKZmCXXOcXX6yAuxLAnu0fxLYlwQWpN0SbNans7X9T4-Rsi0YaUHyMW-w9Sn-038G_QWQQg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1567072480</pqid></control><display><type>article</type><title>A successive three-point perturbation method for fast ray tracing in complex 2D and 3D geological models</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Xu, Tao ; Li, Fei ; Wu, Zhenbo ; Wu, Chenglong ; Gao, Ergen ; Zhou, Bing ; Zhang, Zhongjie ; Xu, Guoming</creator><creatorcontrib>Xu, Tao ; Li, Fei ; Wu, Zhenbo ; Wu, Chenglong ; Gao, Ergen ; Zhou, Bing ; Zhang, Zhongjie ; Xu, Guoming</creatorcontrib><description>This paper presents new 2D and 3D ray-tracing methods that can be applied to traveltime and ray path computations for transmitted, reflected and turning seismic waves in complex geologic models. The new ray-tracing scheme combines segmentally iterative ray tracing (SIRT) and pseudo-bending methods to address both stratified and arbitrarily shaped block models. The new method robustly extends our previous constant block models and constant gradient block models to generally heterogeneous block models, and incorporates cubic splines or triangulated interfaces to boundaries of complex geological bodies. The method is thus more widely applicable to practical problems. A successive three-point perturbation scheme is formulated that iteratively updates the midpoints of a segment based on an initial ray path. The midpoints are corrected by applying first-order analytic formulae to locations of the midpoint inside the block or on the boundaries of the blocks, which are then updated with the pseudo-bending method and SIRT algorithm instead of the traditional iterative methods. Empirical applications, including an example addressing the Bohemian Massif, demonstrate that this successive three-point perturbation scheme successfully performs kinematic ray tracing in heterogeneous complex 2D and 3D media. •Geologic model as an aggregate of arbitrarily shaped blocks;•Heterogeneous velocity distribution in each block;•Segmentally iterative ray tracing and pseudo-bending for ray-tracing;•Modeling scheme tested with CELEBRATION 2000 data in Bohemian Massif.</description><identifier>ISSN: 0040-1951</identifier><identifier>EISSN: 1879-3266</identifier><identifier>DOI: 10.1016/j.tecto.2014.02.012</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>2D and 3D ; Block model ; Blocking ; Constants ; Geology ; Heterogeneous velocity ; Mathematical models ; Perturbation methods ; Ray tracing ; Three dimensional ; Three-point perturbation method ; Two dimensional</subject><ispartof>Tectonophysics, 2014-07, Vol.627, p.72-81</ispartof><rights>2014 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a392t-15056687ec9591c96cf5dd274349e9872381d69f0c40501af17fff62c9fed4cc3</citedby><cites>FETCH-LOGICAL-a392t-15056687ec9591c96cf5dd274349e9872381d69f0c40501af17fff62c9fed4cc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.tecto.2014.02.012$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Xu, Tao</creatorcontrib><creatorcontrib>Li, Fei</creatorcontrib><creatorcontrib>Wu, Zhenbo</creatorcontrib><creatorcontrib>Wu, Chenglong</creatorcontrib><creatorcontrib>Gao, Ergen</creatorcontrib><creatorcontrib>Zhou, Bing</creatorcontrib><creatorcontrib>Zhang, Zhongjie</creatorcontrib><creatorcontrib>Xu, Guoming</creatorcontrib><title>A successive three-point perturbation method for fast ray tracing in complex 2D and 3D geological models</title><title>Tectonophysics</title><description>This paper presents new 2D and 3D ray-tracing methods that can be applied to traveltime and ray path computations for transmitted, reflected and turning seismic waves in complex geologic models. The new ray-tracing scheme combines segmentally iterative ray tracing (SIRT) and pseudo-bending methods to address both stratified and arbitrarily shaped block models. The new method robustly extends our previous constant block models and constant gradient block models to generally heterogeneous block models, and incorporates cubic splines or triangulated interfaces to boundaries of complex geological bodies. The method is thus more widely applicable to practical problems. A successive three-point perturbation scheme is formulated that iteratively updates the midpoints of a segment based on an initial ray path. The midpoints are corrected by applying first-order analytic formulae to locations of the midpoint inside the block or on the boundaries of the blocks, which are then updated with the pseudo-bending method and SIRT algorithm instead of the traditional iterative methods. Empirical applications, including an example addressing the Bohemian Massif, demonstrate that this successive three-point perturbation scheme successfully performs kinematic ray tracing in heterogeneous complex 2D and 3D media. •Geologic model as an aggregate of arbitrarily shaped blocks;•Heterogeneous velocity distribution in each block;•Segmentally iterative ray tracing and pseudo-bending for ray-tracing;•Modeling scheme tested with CELEBRATION 2000 data in Bohemian Massif.</description><subject>2D and 3D</subject><subject>Block model</subject><subject>Blocking</subject><subject>Constants</subject><subject>Geology</subject><subject>Heterogeneous velocity</subject><subject>Mathematical models</subject><subject>Perturbation methods</subject><subject>Ray tracing</subject><subject>Three dimensional</subject><subject>Three-point perturbation method</subject><subject>Two dimensional</subject><issn>0040-1951</issn><issn>1879-3266</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkUFv1DAQRi1EJZbSX8DFRy4JYyex4wOHqqWAVIkLnC13PN71KomD7a3ov2_KcobTXN77pNFj7L2AVoBQH49tJayplSD6FmQLQr5iOzFq03RSqddsB9BDI8wg3rC3pRwBQIlB7djhmpcTIpUSH4nXQyZq1hSXylfK9ZQfXI1p4TPVQ_I8pMyDK5Vn98RrdhiXPY8LxzSvE_3m8pa7xfPulu8pTWkf0U18Tp6m8o5dBDcVuvp7L9nPu88_br4299-_fLu5vm9cZ2RtxACDUqMmNIMRaBSGwXup-643ZEYtu1F4ZQJgDwMIF4QOISiJJpDvEbtL9uG8u-b060Sl2jkWpGlyC6VTsUJpbcZtSP8fHZQGLfsRNrQ7o5hTKZmCXXOcXX6yAuxLAnu0fxLYlwQWpN0SbNans7X9T4-Rsi0YaUHyMW-w9Sn-038G_QWQQg</recordid><startdate>20140713</startdate><enddate>20140713</enddate><creator>Xu, Tao</creator><creator>Li, Fei</creator><creator>Wu, Zhenbo</creator><creator>Wu, Chenglong</creator><creator>Gao, Ergen</creator><creator>Zhou, Bing</creator><creator>Zhang, Zhongjie</creator><creator>Xu, Guoming</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20140713</creationdate><title>A successive three-point perturbation method for fast ray tracing in complex 2D and 3D geological models</title><author>Xu, Tao ; Li, Fei ; Wu, Zhenbo ; Wu, Chenglong ; Gao, Ergen ; Zhou, Bing ; Zhang, Zhongjie ; Xu, Guoming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a392t-15056687ec9591c96cf5dd274349e9872381d69f0c40501af17fff62c9fed4cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>2D and 3D</topic><topic>Block model</topic><topic>Blocking</topic><topic>Constants</topic><topic>Geology</topic><topic>Heterogeneous velocity</topic><topic>Mathematical models</topic><topic>Perturbation methods</topic><topic>Ray tracing</topic><topic>Three dimensional</topic><topic>Three-point perturbation method</topic><topic>Two dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Tao</creatorcontrib><creatorcontrib>Li, Fei</creatorcontrib><creatorcontrib>Wu, Zhenbo</creatorcontrib><creatorcontrib>Wu, Chenglong</creatorcontrib><creatorcontrib>Gao, Ergen</creatorcontrib><creatorcontrib>Zhou, Bing</creatorcontrib><creatorcontrib>Zhang, Zhongjie</creatorcontrib><creatorcontrib>Xu, Guoming</creatorcontrib><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Tectonophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Tao</au><au>Li, Fei</au><au>Wu, Zhenbo</au><au>Wu, Chenglong</au><au>Gao, Ergen</au><au>Zhou, Bing</au><au>Zhang, Zhongjie</au><au>Xu, Guoming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A successive three-point perturbation method for fast ray tracing in complex 2D and 3D geological models</atitle><jtitle>Tectonophysics</jtitle><date>2014-07-13</date><risdate>2014</risdate><volume>627</volume><spage>72</spage><epage>81</epage><pages>72-81</pages><issn>0040-1951</issn><eissn>1879-3266</eissn><abstract>This paper presents new 2D and 3D ray-tracing methods that can be applied to traveltime and ray path computations for transmitted, reflected and turning seismic waves in complex geologic models. The new ray-tracing scheme combines segmentally iterative ray tracing (SIRT) and pseudo-bending methods to address both stratified and arbitrarily shaped block models. The new method robustly extends our previous constant block models and constant gradient block models to generally heterogeneous block models, and incorporates cubic splines or triangulated interfaces to boundaries of complex geological bodies. The method is thus more widely applicable to practical problems. A successive three-point perturbation scheme is formulated that iteratively updates the midpoints of a segment based on an initial ray path. The midpoints are corrected by applying first-order analytic formulae to locations of the midpoint inside the block or on the boundaries of the blocks, which are then updated with the pseudo-bending method and SIRT algorithm instead of the traditional iterative methods. Empirical applications, including an example addressing the Bohemian Massif, demonstrate that this successive three-point perturbation scheme successfully performs kinematic ray tracing in heterogeneous complex 2D and 3D media. •Geologic model as an aggregate of arbitrarily shaped blocks;•Heterogeneous velocity distribution in each block;•Segmentally iterative ray tracing and pseudo-bending for ray-tracing;•Modeling scheme tested with CELEBRATION 2000 data in Bohemian Massif.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.tecto.2014.02.012</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0040-1951
ispartof Tectonophysics, 2014-07, Vol.627, p.72-81
issn 0040-1951
1879-3266
language eng
recordid cdi_proquest_miscellaneous_1677988727
source Elsevier ScienceDirect Journals Complete
subjects 2D and 3D
Block model
Blocking
Constants
Geology
Heterogeneous velocity
Mathematical models
Perturbation methods
Ray tracing
Three dimensional
Three-point perturbation method
Two dimensional
title A successive three-point perturbation method for fast ray tracing in complex 2D and 3D geological models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T07%3A44%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20successive%20three-point%20perturbation%20method%20for%20fast%20ray%20tracing%20in%20complex%202D%20and%203D%20geological%20models&rft.jtitle=Tectonophysics&rft.au=Xu,%20Tao&rft.date=2014-07-13&rft.volume=627&rft.spage=72&rft.epage=81&rft.pages=72-81&rft.issn=0040-1951&rft.eissn=1879-3266&rft_id=info:doi/10.1016/j.tecto.2014.02.012&rft_dat=%3Cproquest_cross%3E1567072480%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1567072480&rft_id=info:pmid/&rft_els_id=S0040195114001127&rfr_iscdi=true