A 3D finite elements micromagnetic simulation of a ferromagnetic particle
In this work a finite elements method is used to simulate the magnetic behavior of a cubic ferromagnetic particle. The partial differential equations of magnetization are derived assuming that the local moment rotates as a rigid current loop. The three equations for the magnetization and the one for...
Gespeichert in:
Veröffentlicht in: | Journal of magnetism and magnetic materials 2014-08, Vol.363, p.152-157 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 157 |
---|---|
container_issue | |
container_start_page | 152 |
container_title | Journal of magnetism and magnetic materials |
container_volume | 363 |
creator | Ntallis, N. Efthimiadis, K.G. |
description | In this work a finite elements method is used to simulate the magnetic behavior of a cubic ferromagnetic particle. The partial differential equations of magnetization are derived assuming that the local moment rotates as a rigid current loop. The three equations for the magnetization and the one for the magnetic scalar potential are solved simultaneously by directly applying the weak form. Using for the cubic particle the same magnetic characteristics as those of NIST Standard Problem #3, full magnetization loops are taken at different particle sizes up to 100 times the exchange length. The results indicate the magnetization reversal mechanisms, such as the coherent rotation, the curling, the formation and propagation of a magnetic wall.
Different PDEs are derived assuming that local moment rotates as a rigid current loop.PDEs are solved through the FEM by directly applying the weak form.The NIST Standard Problem #3 is solved by calculating full magnetization loops.Different reversal mechanisms are obtained as the particle׳s size increases. |
doi_str_mv | 10.1016/j.jmmm.2014.03.077 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677988060</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304885314003163</els_id><sourcerecordid>1677988060</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-f52fa30060c26f118f994e5142fd5bd7db08bbf693944ed06cd91c5bf1105f243</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhjOARCn8ASYvSCwJ5_gjicRSla9KlVhgthznjFzFSbFTJP49rlohJphueJ-7V_dk2RWFggKVt5ti470vSqC8AFZAVZ1kM2DA87oW7Cw7j3EDkNJazrLVgrB7Yt3gJiTYo8dhisQ7E0av3wecnCHR-V2vJzcOZLREE4vhV7rVIY0eL7JTq_uIl8c5z94eH16Xz_n65Wm1XKxzwxo55VaUVjMACaaUltLaNg1HQXlpO9F2VddC3bZWNqzhHDuQpmuoEW1CQdiSs3l2c7i7DePHDuOkvIsG-14POO6iorKqmrpOBf-jQlYguQCR0PKApsdjDGjVNjivw5eioPZa1Ubttaq9VgVMJa1p6fp4X0ejexv0YFz82SxrQVnJaOLuDhwmL58Og4rG4WCwcwHNpLrR_VXzDaWljy8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1567064505</pqid></control><display><type>article</type><title>A 3D finite elements micromagnetic simulation of a ferromagnetic particle</title><source>Elsevier ScienceDirect Journals</source><creator>Ntallis, N. ; Efthimiadis, K.G.</creator><creatorcontrib>Ntallis, N. ; Efthimiadis, K.G.</creatorcontrib><description>In this work a finite elements method is used to simulate the magnetic behavior of a cubic ferromagnetic particle. The partial differential equations of magnetization are derived assuming that the local moment rotates as a rigid current loop. The three equations for the magnetization and the one for the magnetic scalar potential are solved simultaneously by directly applying the weak form. Using for the cubic particle the same magnetic characteristics as those of NIST Standard Problem #3, full magnetization loops are taken at different particle sizes up to 100 times the exchange length. The results indicate the magnetization reversal mechanisms, such as the coherent rotation, the curling, the formation and propagation of a magnetic wall.
Different PDEs are derived assuming that local moment rotates as a rigid current loop.PDEs are solved through the FEM by directly applying the weak form.The NIST Standard Problem #3 is solved by calculating full magnetization loops.Different reversal mechanisms are obtained as the particle׳s size increases.</description><identifier>ISSN: 0304-8853</identifier><identifier>DOI: 10.1016/j.jmmm.2014.03.077</identifier><identifier>CODEN: JMMMDC</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Computer simulation ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Critical-point effects, specific heats, short-range order ; Exact sciences and technology ; Ferromagnetism ; Finite element method ; Magnetic properties and materials ; Magnetization ; Magnetization reversal mechanism ; Mathematical analysis ; Micromagnetic simulation ; Micromagnetic standard problem ; Numerical simulation studies ; Physics ; Simulation ; Small particles and nanoscale materials ; Studies of specific magnetic materials ; Three dimensional ; Walls</subject><ispartof>Journal of magnetism and magnetic materials, 2014-08, Vol.363, p.152-157</ispartof><rights>2014 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-f52fa30060c26f118f994e5142fd5bd7db08bbf693944ed06cd91c5bf1105f243</citedby><cites>FETCH-LOGICAL-c396t-f52fa30060c26f118f994e5142fd5bd7db08bbf693944ed06cd91c5bf1105f243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0304885314003163$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28513231$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ntallis, N.</creatorcontrib><creatorcontrib>Efthimiadis, K.G.</creatorcontrib><title>A 3D finite elements micromagnetic simulation of a ferromagnetic particle</title><title>Journal of magnetism and magnetic materials</title><description>In this work a finite elements method is used to simulate the magnetic behavior of a cubic ferromagnetic particle. The partial differential equations of magnetization are derived assuming that the local moment rotates as a rigid current loop. The three equations for the magnetization and the one for the magnetic scalar potential are solved simultaneously by directly applying the weak form. Using for the cubic particle the same magnetic characteristics as those of NIST Standard Problem #3, full magnetization loops are taken at different particle sizes up to 100 times the exchange length. The results indicate the magnetization reversal mechanisms, such as the coherent rotation, the curling, the formation and propagation of a magnetic wall.
Different PDEs are derived assuming that local moment rotates as a rigid current loop.PDEs are solved through the FEM by directly applying the weak form.The NIST Standard Problem #3 is solved by calculating full magnetization loops.Different reversal mechanisms are obtained as the particle׳s size increases.</description><subject>Computer simulation</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Critical-point effects, specific heats, short-range order</subject><subject>Exact sciences and technology</subject><subject>Ferromagnetism</subject><subject>Finite element method</subject><subject>Magnetic properties and materials</subject><subject>Magnetization</subject><subject>Magnetization reversal mechanism</subject><subject>Mathematical analysis</subject><subject>Micromagnetic simulation</subject><subject>Micromagnetic standard problem</subject><subject>Numerical simulation studies</subject><subject>Physics</subject><subject>Simulation</subject><subject>Small particles and nanoscale materials</subject><subject>Studies of specific magnetic materials</subject><subject>Three dimensional</subject><subject>Walls</subject><issn>0304-8853</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAQhjOARCn8ASYvSCwJ5_gjicRSla9KlVhgthznjFzFSbFTJP49rlohJphueJ-7V_dk2RWFggKVt5ti470vSqC8AFZAVZ1kM2DA87oW7Cw7j3EDkNJazrLVgrB7Yt3gJiTYo8dhisQ7E0av3wecnCHR-V2vJzcOZLREE4vhV7rVIY0eL7JTq_uIl8c5z94eH16Xz_n65Wm1XKxzwxo55VaUVjMACaaUltLaNg1HQXlpO9F2VddC3bZWNqzhHDuQpmuoEW1CQdiSs3l2c7i7DePHDuOkvIsG-14POO6iorKqmrpOBf-jQlYguQCR0PKApsdjDGjVNjivw5eioPZa1Ubttaq9VgVMJa1p6fp4X0ejexv0YFz82SxrQVnJaOLuDhwmL58Og4rG4WCwcwHNpLrR_VXzDaWljy8</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Ntallis, N.</creator><creator>Efthimiadis, K.G.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7SR</scope><scope>8BQ</scope><scope>JG9</scope></search><sort><creationdate>20140801</creationdate><title>A 3D finite elements micromagnetic simulation of a ferromagnetic particle</title><author>Ntallis, N. ; Efthimiadis, K.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-f52fa30060c26f118f994e5142fd5bd7db08bbf693944ed06cd91c5bf1105f243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Computer simulation</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Critical-point effects, specific heats, short-range order</topic><topic>Exact sciences and technology</topic><topic>Ferromagnetism</topic><topic>Finite element method</topic><topic>Magnetic properties and materials</topic><topic>Magnetization</topic><topic>Magnetization reversal mechanism</topic><topic>Mathematical analysis</topic><topic>Micromagnetic simulation</topic><topic>Micromagnetic standard problem</topic><topic>Numerical simulation studies</topic><topic>Physics</topic><topic>Simulation</topic><topic>Small particles and nanoscale materials</topic><topic>Studies of specific magnetic materials</topic><topic>Three dimensional</topic><topic>Walls</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ntallis, N.</creatorcontrib><creatorcontrib>Efthimiadis, K.G.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Materials Research Database</collection><jtitle>Journal of magnetism and magnetic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ntallis, N.</au><au>Efthimiadis, K.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A 3D finite elements micromagnetic simulation of a ferromagnetic particle</atitle><jtitle>Journal of magnetism and magnetic materials</jtitle><date>2014-08-01</date><risdate>2014</risdate><volume>363</volume><spage>152</spage><epage>157</epage><pages>152-157</pages><issn>0304-8853</issn><coden>JMMMDC</coden><abstract>In this work a finite elements method is used to simulate the magnetic behavior of a cubic ferromagnetic particle. The partial differential equations of magnetization are derived assuming that the local moment rotates as a rigid current loop. The three equations for the magnetization and the one for the magnetic scalar potential are solved simultaneously by directly applying the weak form. Using for the cubic particle the same magnetic characteristics as those of NIST Standard Problem #3, full magnetization loops are taken at different particle sizes up to 100 times the exchange length. The results indicate the magnetization reversal mechanisms, such as the coherent rotation, the curling, the formation and propagation of a magnetic wall.
Different PDEs are derived assuming that local moment rotates as a rigid current loop.PDEs are solved through the FEM by directly applying the weak form.The NIST Standard Problem #3 is solved by calculating full magnetization loops.Different reversal mechanisms are obtained as the particle׳s size increases.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jmmm.2014.03.077</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-8853 |
ispartof | Journal of magnetism and magnetic materials, 2014-08, Vol.363, p.152-157 |
issn | 0304-8853 |
language | eng |
recordid | cdi_proquest_miscellaneous_1677988060 |
source | Elsevier ScienceDirect Journals |
subjects | Computer simulation Condensed matter: electronic structure, electrical, magnetic, and optical properties Critical-point effects, specific heats, short-range order Exact sciences and technology Ferromagnetism Finite element method Magnetic properties and materials Magnetization Magnetization reversal mechanism Mathematical analysis Micromagnetic simulation Micromagnetic standard problem Numerical simulation studies Physics Simulation Small particles and nanoscale materials Studies of specific magnetic materials Three dimensional Walls |
title | A 3D finite elements micromagnetic simulation of a ferromagnetic particle |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T20%3A50%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%203D%20finite%20elements%20micromagnetic%20simulation%20of%20a%20ferromagnetic%20particle&rft.jtitle=Journal%20of%20magnetism%20and%20magnetic%20materials&rft.au=Ntallis,%20N.&rft.date=2014-08-01&rft.volume=363&rft.spage=152&rft.epage=157&rft.pages=152-157&rft.issn=0304-8853&rft.coden=JMMMDC&rft_id=info:doi/10.1016/j.jmmm.2014.03.077&rft_dat=%3Cproquest_cross%3E1677988060%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1567064505&rft_id=info:pmid/&rft_els_id=S0304885314003163&rfr_iscdi=true |