A 3D finite elements micromagnetic simulation of a ferromagnetic particle

In this work a finite elements method is used to simulate the magnetic behavior of a cubic ferromagnetic particle. The partial differential equations of magnetization are derived assuming that the local moment rotates as a rigid current loop. The three equations for the magnetization and the one for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of magnetism and magnetic materials 2014-08, Vol.363, p.152-157
Hauptverfasser: Ntallis, N., Efthimiadis, K.G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 157
container_issue
container_start_page 152
container_title Journal of magnetism and magnetic materials
container_volume 363
creator Ntallis, N.
Efthimiadis, K.G.
description In this work a finite elements method is used to simulate the magnetic behavior of a cubic ferromagnetic particle. The partial differential equations of magnetization are derived assuming that the local moment rotates as a rigid current loop. The three equations for the magnetization and the one for the magnetic scalar potential are solved simultaneously by directly applying the weak form. Using for the cubic particle the same magnetic characteristics as those of NIST Standard Problem #3, full magnetization loops are taken at different particle sizes up to 100 times the exchange length. The results indicate the magnetization reversal mechanisms, such as the coherent rotation, the curling, the formation and propagation of a magnetic wall. Different PDEs are derived assuming that local moment rotates as a rigid current loop.PDEs are solved through the FEM by directly applying the weak form.The NIST Standard Problem #3 is solved by calculating full magnetization loops.Different reversal mechanisms are obtained as the particle׳s size increases.
doi_str_mv 10.1016/j.jmmm.2014.03.077
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677988060</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304885314003163</els_id><sourcerecordid>1677988060</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-f52fa30060c26f118f994e5142fd5bd7db08bbf693944ed06cd91c5bf1105f243</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhjOARCn8ASYvSCwJ5_gjicRSla9KlVhgthznjFzFSbFTJP49rlohJphueJ-7V_dk2RWFggKVt5ti470vSqC8AFZAVZ1kM2DA87oW7Cw7j3EDkNJazrLVgrB7Yt3gJiTYo8dhisQ7E0av3wecnCHR-V2vJzcOZLREE4vhV7rVIY0eL7JTq_uIl8c5z94eH16Xz_n65Wm1XKxzwxo55VaUVjMACaaUltLaNg1HQXlpO9F2VddC3bZWNqzhHDuQpmuoEW1CQdiSs3l2c7i7DePHDuOkvIsG-14POO6iorKqmrpOBf-jQlYguQCR0PKApsdjDGjVNjivw5eioPZa1Ubttaq9VgVMJa1p6fp4X0ejexv0YFz82SxrQVnJaOLuDhwmL58Og4rG4WCwcwHNpLrR_VXzDaWljy8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1567064505</pqid></control><display><type>article</type><title>A 3D finite elements micromagnetic simulation of a ferromagnetic particle</title><source>Elsevier ScienceDirect Journals</source><creator>Ntallis, N. ; Efthimiadis, K.G.</creator><creatorcontrib>Ntallis, N. ; Efthimiadis, K.G.</creatorcontrib><description>In this work a finite elements method is used to simulate the magnetic behavior of a cubic ferromagnetic particle. The partial differential equations of magnetization are derived assuming that the local moment rotates as a rigid current loop. The three equations for the magnetization and the one for the magnetic scalar potential are solved simultaneously by directly applying the weak form. Using for the cubic particle the same magnetic characteristics as those of NIST Standard Problem #3, full magnetization loops are taken at different particle sizes up to 100 times the exchange length. The results indicate the magnetization reversal mechanisms, such as the coherent rotation, the curling, the formation and propagation of a magnetic wall. Different PDEs are derived assuming that local moment rotates as a rigid current loop.PDEs are solved through the FEM by directly applying the weak form.The NIST Standard Problem #3 is solved by calculating full magnetization loops.Different reversal mechanisms are obtained as the particle׳s size increases.</description><identifier>ISSN: 0304-8853</identifier><identifier>DOI: 10.1016/j.jmmm.2014.03.077</identifier><identifier>CODEN: JMMMDC</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Computer simulation ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Critical-point effects, specific heats, short-range order ; Exact sciences and technology ; Ferromagnetism ; Finite element method ; Magnetic properties and materials ; Magnetization ; Magnetization reversal mechanism ; Mathematical analysis ; Micromagnetic simulation ; Micromagnetic standard problem ; Numerical simulation studies ; Physics ; Simulation ; Small particles and nanoscale materials ; Studies of specific magnetic materials ; Three dimensional ; Walls</subject><ispartof>Journal of magnetism and magnetic materials, 2014-08, Vol.363, p.152-157</ispartof><rights>2014 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-f52fa30060c26f118f994e5142fd5bd7db08bbf693944ed06cd91c5bf1105f243</citedby><cites>FETCH-LOGICAL-c396t-f52fa30060c26f118f994e5142fd5bd7db08bbf693944ed06cd91c5bf1105f243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0304885314003163$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28513231$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ntallis, N.</creatorcontrib><creatorcontrib>Efthimiadis, K.G.</creatorcontrib><title>A 3D finite elements micromagnetic simulation of a ferromagnetic particle</title><title>Journal of magnetism and magnetic materials</title><description>In this work a finite elements method is used to simulate the magnetic behavior of a cubic ferromagnetic particle. The partial differential equations of magnetization are derived assuming that the local moment rotates as a rigid current loop. The three equations for the magnetization and the one for the magnetic scalar potential are solved simultaneously by directly applying the weak form. Using for the cubic particle the same magnetic characteristics as those of NIST Standard Problem #3, full magnetization loops are taken at different particle sizes up to 100 times the exchange length. The results indicate the magnetization reversal mechanisms, such as the coherent rotation, the curling, the formation and propagation of a magnetic wall. Different PDEs are derived assuming that local moment rotates as a rigid current loop.PDEs are solved through the FEM by directly applying the weak form.The NIST Standard Problem #3 is solved by calculating full magnetization loops.Different reversal mechanisms are obtained as the particle׳s size increases.</description><subject>Computer simulation</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Critical-point effects, specific heats, short-range order</subject><subject>Exact sciences and technology</subject><subject>Ferromagnetism</subject><subject>Finite element method</subject><subject>Magnetic properties and materials</subject><subject>Magnetization</subject><subject>Magnetization reversal mechanism</subject><subject>Mathematical analysis</subject><subject>Micromagnetic simulation</subject><subject>Micromagnetic standard problem</subject><subject>Numerical simulation studies</subject><subject>Physics</subject><subject>Simulation</subject><subject>Small particles and nanoscale materials</subject><subject>Studies of specific magnetic materials</subject><subject>Three dimensional</subject><subject>Walls</subject><issn>0304-8853</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAQhjOARCn8ASYvSCwJ5_gjicRSla9KlVhgthznjFzFSbFTJP49rlohJphueJ-7V_dk2RWFggKVt5ti470vSqC8AFZAVZ1kM2DA87oW7Cw7j3EDkNJazrLVgrB7Yt3gJiTYo8dhisQ7E0av3wecnCHR-V2vJzcOZLREE4vhV7rVIY0eL7JTq_uIl8c5z94eH16Xz_n65Wm1XKxzwxo55VaUVjMACaaUltLaNg1HQXlpO9F2VddC3bZWNqzhHDuQpmuoEW1CQdiSs3l2c7i7DePHDuOkvIsG-14POO6iorKqmrpOBf-jQlYguQCR0PKApsdjDGjVNjivw5eioPZa1Ubttaq9VgVMJa1p6fp4X0ejexv0YFz82SxrQVnJaOLuDhwmL58Og4rG4WCwcwHNpLrR_VXzDaWljy8</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Ntallis, N.</creator><creator>Efthimiadis, K.G.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7SR</scope><scope>8BQ</scope><scope>JG9</scope></search><sort><creationdate>20140801</creationdate><title>A 3D finite elements micromagnetic simulation of a ferromagnetic particle</title><author>Ntallis, N. ; Efthimiadis, K.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-f52fa30060c26f118f994e5142fd5bd7db08bbf693944ed06cd91c5bf1105f243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Computer simulation</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Critical-point effects, specific heats, short-range order</topic><topic>Exact sciences and technology</topic><topic>Ferromagnetism</topic><topic>Finite element method</topic><topic>Magnetic properties and materials</topic><topic>Magnetization</topic><topic>Magnetization reversal mechanism</topic><topic>Mathematical analysis</topic><topic>Micromagnetic simulation</topic><topic>Micromagnetic standard problem</topic><topic>Numerical simulation studies</topic><topic>Physics</topic><topic>Simulation</topic><topic>Small particles and nanoscale materials</topic><topic>Studies of specific magnetic materials</topic><topic>Three dimensional</topic><topic>Walls</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ntallis, N.</creatorcontrib><creatorcontrib>Efthimiadis, K.G.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Materials Research Database</collection><jtitle>Journal of magnetism and magnetic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ntallis, N.</au><au>Efthimiadis, K.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A 3D finite elements micromagnetic simulation of a ferromagnetic particle</atitle><jtitle>Journal of magnetism and magnetic materials</jtitle><date>2014-08-01</date><risdate>2014</risdate><volume>363</volume><spage>152</spage><epage>157</epage><pages>152-157</pages><issn>0304-8853</issn><coden>JMMMDC</coden><abstract>In this work a finite elements method is used to simulate the magnetic behavior of a cubic ferromagnetic particle. The partial differential equations of magnetization are derived assuming that the local moment rotates as a rigid current loop. The three equations for the magnetization and the one for the magnetic scalar potential are solved simultaneously by directly applying the weak form. Using for the cubic particle the same magnetic characteristics as those of NIST Standard Problem #3, full magnetization loops are taken at different particle sizes up to 100 times the exchange length. The results indicate the magnetization reversal mechanisms, such as the coherent rotation, the curling, the formation and propagation of a magnetic wall. Different PDEs are derived assuming that local moment rotates as a rigid current loop.PDEs are solved through the FEM by directly applying the weak form.The NIST Standard Problem #3 is solved by calculating full magnetization loops.Different reversal mechanisms are obtained as the particle׳s size increases.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jmmm.2014.03.077</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0304-8853
ispartof Journal of magnetism and magnetic materials, 2014-08, Vol.363, p.152-157
issn 0304-8853
language eng
recordid cdi_proquest_miscellaneous_1677988060
source Elsevier ScienceDirect Journals
subjects Computer simulation
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Critical-point effects, specific heats, short-range order
Exact sciences and technology
Ferromagnetism
Finite element method
Magnetic properties and materials
Magnetization
Magnetization reversal mechanism
Mathematical analysis
Micromagnetic simulation
Micromagnetic standard problem
Numerical simulation studies
Physics
Simulation
Small particles and nanoscale materials
Studies of specific magnetic materials
Three dimensional
Walls
title A 3D finite elements micromagnetic simulation of a ferromagnetic particle
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T20%3A50%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%203D%20finite%20elements%20micromagnetic%20simulation%20of%20a%20ferromagnetic%20particle&rft.jtitle=Journal%20of%20magnetism%20and%20magnetic%20materials&rft.au=Ntallis,%20N.&rft.date=2014-08-01&rft.volume=363&rft.spage=152&rft.epage=157&rft.pages=152-157&rft.issn=0304-8853&rft.coden=JMMMDC&rft_id=info:doi/10.1016/j.jmmm.2014.03.077&rft_dat=%3Cproquest_cross%3E1677988060%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1567064505&rft_id=info:pmid/&rft_els_id=S0304885314003163&rfr_iscdi=true