On the transparent conducting oxide Al doped ZnO: First Principles and Boltzmann equations study

•The incorporation of Al in ZnO increases the optical band edge absorption.•Incorporated Al creates shallow donor states of Al-3s around Fermi level.•Transmittance decreases in the visible and IR regions, while it increases in the UV region.•Electrical conductivity increases and reaches almost the s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of alloys and compounds 2014-08, Vol.605, p.118-123
Hauptverfasser: Slassi, A., Naji, S., Benyoussef, A., Hamedoun, M., El Kenz, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 123
container_issue
container_start_page 118
container_title Journal of alloys and compounds
container_volume 605
creator Slassi, A.
Naji, S.
Benyoussef, A.
Hamedoun, M.
El Kenz, A.
description •The incorporation of Al in ZnO increases the optical band edge absorption.•Incorporated Al creates shallow donor states of Al-3s around Fermi level.•Transmittance decreases in the visible and IR regions, while it increases in the UV region.•Electrical conductivity increases and reaches almost the saturation for high concentration of Al. We report, in this work, a theoretical study on the electronic, optical and electrical properties of pure and Al doped ZnO with different concentrations. In fact, we investigate these properties using both First Principles calculations within TB-mBJ approximation and Boltzmann equations under the constant relaxation time approximation for charge carriers. It is found out that, the calculated lattice parameters and the optical band gap of pure ZnO are close to the experimental values and in a good agreement with the other theoretical studies. It is also observed that, the incorporations of Al in ZnO increase the optical band edge absorption which leads to a blue shift and no deep impurities levels are induced in the band gap as well. More precisely, these incorporations create shallow donor states around Fermi level in the conduction band minimum from mainly Al-3s orbital. Beside this, it is found that, the transmittance is decreased in the visible and IR regions, while it is significantly improved in UV region. Finally, our calculations show that the electrical conductivity is enhanced as a result of Al doping and it reaches almost the saturation for high concentration of Al. These features make Al doped ZnO a transparent conducting electrode for optoelectronic device applications.
doi_str_mv 10.1016/j.jallcom.2014.03.177
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677987971</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925838814007762</els_id><sourcerecordid>1560101831</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-ac2d6ec72a3d6755504eac04c23fcf74291bea878719bdcbc2cf8aa2af12a9403</originalsourceid><addsrcrecordid>eNqF0E2LFDEQgOEgCo6rP0HIRfDSvUn6I2kvsi7uKiyMB714iTWVas3Qk_QmaXH99fYwg9c91eWtKngYey1FLYXsL_f1HqYJ46FWQra1aGqp9RO2kUY3Vdv3w1O2EYPqKtMY85y9yHkvhJBDIzfsxzbw8ot4SRDyDIlC4RiDW7D48JPHP94Rv5q4izM5_j1s3_Ebn3LhX5IP6OeJMofg-Ic4lb8HCIHT_QLFx5B5Lot7eMmejTBlenWeF-zbzcev15-qu-3t5-uruwpb0ZUKULmeUCtoXK-7rhMtAYoWVTPiqFs1yB2B0UbLYedwhwpHA6BglAqGVjQX7O3p7pzi_UK52IPPSNMEgeKSrey1HowetHw87XqxwprmmHanFFPMOdFo5-QPkB6sFPaIb_f2jG-P-FY0dsVf996cX0BGmMZVF33-v6xM25tBqLV7f-popfntKdmMngKS84mwWBf9I5_-ARUtniU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1560101831</pqid></control><display><type>article</type><title>On the transparent conducting oxide Al doped ZnO: First Principles and Boltzmann equations study</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Slassi, A. ; Naji, S. ; Benyoussef, A. ; Hamedoun, M. ; El Kenz, A.</creator><creatorcontrib>Slassi, A. ; Naji, S. ; Benyoussef, A. ; Hamedoun, M. ; El Kenz, A.</creatorcontrib><description>•The incorporation of Al in ZnO increases the optical band edge absorption.•Incorporated Al creates shallow donor states of Al-3s around Fermi level.•Transmittance decreases in the visible and IR regions, while it increases in the UV region.•Electrical conductivity increases and reaches almost the saturation for high concentration of Al. We report, in this work, a theoretical study on the electronic, optical and electrical properties of pure and Al doped ZnO with different concentrations. In fact, we investigate these properties using both First Principles calculations within TB-mBJ approximation and Boltzmann equations under the constant relaxation time approximation for charge carriers. It is found out that, the calculated lattice parameters and the optical band gap of pure ZnO are close to the experimental values and in a good agreement with the other theoretical studies. It is also observed that, the incorporations of Al in ZnO increase the optical band edge absorption which leads to a blue shift and no deep impurities levels are induced in the band gap as well. More precisely, these incorporations create shallow donor states around Fermi level in the conduction band minimum from mainly Al-3s orbital. Beside this, it is found that, the transmittance is decreased in the visible and IR regions, while it is significantly improved in UV region. Finally, our calculations show that the electrical conductivity is enhanced as a result of Al doping and it reaches almost the saturation for high concentration of Al. These features make Al doped ZnO a transparent conducting electrode for optoelectronic device applications.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2014.03.177</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Aluminum ; Approximation ; Boltzmann equation ; Boltzmann transport equation ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Conduction ; Conductivity phenomena in semiconductors and insulators ; Electronic transport in condensed matter ; Exact sciences and technology ; First Principles calculations ; Mathematical analysis ; Optical constants: refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity ; Optical properties ; Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation ; Optical properties of bulk materials and thin films ; Optoelectronic devices ; Physics ; TB-mBJ approximation ; Transparent conducting oxides (TCOs) ; Transport properties ; Zinc oxide</subject><ispartof>Journal of alloys and compounds, 2014-08, Vol.605, p.118-123</ispartof><rights>2014 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-ac2d6ec72a3d6755504eac04c23fcf74291bea878719bdcbc2cf8aa2af12a9403</citedby><cites>FETCH-LOGICAL-c405t-ac2d6ec72a3d6755504eac04c23fcf74291bea878719bdcbc2cf8aa2af12a9403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jallcom.2014.03.177$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28468902$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Slassi, A.</creatorcontrib><creatorcontrib>Naji, S.</creatorcontrib><creatorcontrib>Benyoussef, A.</creatorcontrib><creatorcontrib>Hamedoun, M.</creatorcontrib><creatorcontrib>El Kenz, A.</creatorcontrib><title>On the transparent conducting oxide Al doped ZnO: First Principles and Boltzmann equations study</title><title>Journal of alloys and compounds</title><description>•The incorporation of Al in ZnO increases the optical band edge absorption.•Incorporated Al creates shallow donor states of Al-3s around Fermi level.•Transmittance decreases in the visible and IR regions, while it increases in the UV region.•Electrical conductivity increases and reaches almost the saturation for high concentration of Al. We report, in this work, a theoretical study on the electronic, optical and electrical properties of pure and Al doped ZnO with different concentrations. In fact, we investigate these properties using both First Principles calculations within TB-mBJ approximation and Boltzmann equations under the constant relaxation time approximation for charge carriers. It is found out that, the calculated lattice parameters and the optical band gap of pure ZnO are close to the experimental values and in a good agreement with the other theoretical studies. It is also observed that, the incorporations of Al in ZnO increase the optical band edge absorption which leads to a blue shift and no deep impurities levels are induced in the band gap as well. More precisely, these incorporations create shallow donor states around Fermi level in the conduction band minimum from mainly Al-3s orbital. Beside this, it is found that, the transmittance is decreased in the visible and IR regions, while it is significantly improved in UV region. Finally, our calculations show that the electrical conductivity is enhanced as a result of Al doping and it reaches almost the saturation for high concentration of Al. These features make Al doped ZnO a transparent conducting electrode for optoelectronic device applications.</description><subject>Aluminum</subject><subject>Approximation</subject><subject>Boltzmann equation</subject><subject>Boltzmann transport equation</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Conduction</subject><subject>Conductivity phenomena in semiconductors and insulators</subject><subject>Electronic transport in condensed matter</subject><subject>Exact sciences and technology</subject><subject>First Principles calculations</subject><subject>Mathematical analysis</subject><subject>Optical constants: refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity</subject><subject>Optical properties</subject><subject>Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation</subject><subject>Optical properties of bulk materials and thin films</subject><subject>Optoelectronic devices</subject><subject>Physics</subject><subject>TB-mBJ approximation</subject><subject>Transparent conducting oxides (TCOs)</subject><subject>Transport properties</subject><subject>Zinc oxide</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqF0E2LFDEQgOEgCo6rP0HIRfDSvUn6I2kvsi7uKiyMB714iTWVas3Qk_QmaXH99fYwg9c91eWtKngYey1FLYXsL_f1HqYJ46FWQra1aGqp9RO2kUY3Vdv3w1O2EYPqKtMY85y9yHkvhJBDIzfsxzbw8ot4SRDyDIlC4RiDW7D48JPHP94Rv5q4izM5_j1s3_Ebn3LhX5IP6OeJMofg-Ic4lb8HCIHT_QLFx5B5Lot7eMmejTBlenWeF-zbzcev15-qu-3t5-uruwpb0ZUKULmeUCtoXK-7rhMtAYoWVTPiqFs1yB2B0UbLYedwhwpHA6BglAqGVjQX7O3p7pzi_UK52IPPSNMEgeKSrey1HowetHw87XqxwprmmHanFFPMOdFo5-QPkB6sFPaIb_f2jG-P-FY0dsVf996cX0BGmMZVF33-v6xM25tBqLV7f-popfntKdmMngKS84mwWBf9I5_-ARUtniU</recordid><startdate>20140825</startdate><enddate>20140825</enddate><creator>Slassi, A.</creator><creator>Naji, S.</creator><creator>Benyoussef, A.</creator><creator>Hamedoun, M.</creator><creator>El Kenz, A.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20140825</creationdate><title>On the transparent conducting oxide Al doped ZnO: First Principles and Boltzmann equations study</title><author>Slassi, A. ; Naji, S. ; Benyoussef, A. ; Hamedoun, M. ; El Kenz, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-ac2d6ec72a3d6755504eac04c23fcf74291bea878719bdcbc2cf8aa2af12a9403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Aluminum</topic><topic>Approximation</topic><topic>Boltzmann equation</topic><topic>Boltzmann transport equation</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Conduction</topic><topic>Conductivity phenomena in semiconductors and insulators</topic><topic>Electronic transport in condensed matter</topic><topic>Exact sciences and technology</topic><topic>First Principles calculations</topic><topic>Mathematical analysis</topic><topic>Optical constants: refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity</topic><topic>Optical properties</topic><topic>Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation</topic><topic>Optical properties of bulk materials and thin films</topic><topic>Optoelectronic devices</topic><topic>Physics</topic><topic>TB-mBJ approximation</topic><topic>Transparent conducting oxides (TCOs)</topic><topic>Transport properties</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Slassi, A.</creatorcontrib><creatorcontrib>Naji, S.</creatorcontrib><creatorcontrib>Benyoussef, A.</creatorcontrib><creatorcontrib>Hamedoun, M.</creatorcontrib><creatorcontrib>El Kenz, A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Slassi, A.</au><au>Naji, S.</au><au>Benyoussef, A.</au><au>Hamedoun, M.</au><au>El Kenz, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the transparent conducting oxide Al doped ZnO: First Principles and Boltzmann equations study</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2014-08-25</date><risdate>2014</risdate><volume>605</volume><spage>118</spage><epage>123</epage><pages>118-123</pages><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>•The incorporation of Al in ZnO increases the optical band edge absorption.•Incorporated Al creates shallow donor states of Al-3s around Fermi level.•Transmittance decreases in the visible and IR regions, while it increases in the UV region.•Electrical conductivity increases and reaches almost the saturation for high concentration of Al. We report, in this work, a theoretical study on the electronic, optical and electrical properties of pure and Al doped ZnO with different concentrations. In fact, we investigate these properties using both First Principles calculations within TB-mBJ approximation and Boltzmann equations under the constant relaxation time approximation for charge carriers. It is found out that, the calculated lattice parameters and the optical band gap of pure ZnO are close to the experimental values and in a good agreement with the other theoretical studies. It is also observed that, the incorporations of Al in ZnO increase the optical band edge absorption which leads to a blue shift and no deep impurities levels are induced in the band gap as well. More precisely, these incorporations create shallow donor states around Fermi level in the conduction band minimum from mainly Al-3s orbital. Beside this, it is found that, the transmittance is decreased in the visible and IR regions, while it is significantly improved in UV region. Finally, our calculations show that the electrical conductivity is enhanced as a result of Al doping and it reaches almost the saturation for high concentration of Al. These features make Al doped ZnO a transparent conducting electrode for optoelectronic device applications.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2014.03.177</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0925-8388
ispartof Journal of alloys and compounds, 2014-08, Vol.605, p.118-123
issn 0925-8388
1873-4669
language eng
recordid cdi_proquest_miscellaneous_1677987971
source Elsevier ScienceDirect Journals Complete
subjects Aluminum
Approximation
Boltzmann equation
Boltzmann transport equation
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Conduction
Conductivity phenomena in semiconductors and insulators
Electronic transport in condensed matter
Exact sciences and technology
First Principles calculations
Mathematical analysis
Optical constants: refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity
Optical properties
Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation
Optical properties of bulk materials and thin films
Optoelectronic devices
Physics
TB-mBJ approximation
Transparent conducting oxides (TCOs)
Transport properties
Zinc oxide
title On the transparent conducting oxide Al doped ZnO: First Principles and Boltzmann equations study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T03%3A41%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20transparent%20conducting%20oxide%20Al%20doped%20ZnO:%20First%20Principles%20and%20Boltzmann%20equations%20study&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Slassi,%20A.&rft.date=2014-08-25&rft.volume=605&rft.spage=118&rft.epage=123&rft.pages=118-123&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2014.03.177&rft_dat=%3Cproquest_cross%3E1560101831%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1560101831&rft_id=info:pmid/&rft_els_id=S0925838814007762&rfr_iscdi=true