Frequency as a key parameter in discriminating the failure types of thermal barrier coatings: Cluster analysis of acoustic emission signals

A key parameter in discriminating the failure types of thermal barrier coatings (TBCs) was found out by using the k-means cluster analysis of acoustic emission (AE) signals. It is shown that there are five classes of mechanisms, including surface vertical cracks, opening interface cracks, sliding in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Surface & coatings technology 2015-02, Vol.264, p.97-104
Hauptverfasser: Yang, L., Kang, H.S., Zhou, Y.C., Zhu, W., Cai, C.Y., Lu, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 104
container_issue
container_start_page 97
container_title Surface & coatings technology
container_volume 264
creator Yang, L.
Kang, H.S.
Zhou, Y.C.
Zhu, W.
Cai, C.Y.
Lu, C.
description A key parameter in discriminating the failure types of thermal barrier coatings (TBCs) was found out by using the k-means cluster analysis of acoustic emission (AE) signals. It is shown that there are five classes of mechanisms, including surface vertical cracks, opening interface cracks, sliding interface cracks, substrate deformation and macroscopic cleavage or spallation. Except for the last one, the other four classes can be clearly distinguished from their peak frequency distributions in the ranges of 170–250, 400–500, 260–350 and 40–150kHz, respectively. However, AE signals overlap with each other in other parameter spaces, e.g., amplitude, energy, rise time, and duration time. The results indicate that the frequency can be applied to identify the AE source mechanisms in TBCs. •Five failure modes in TBCs are discriminated by the k-means cluster analysis of AE signals.•Frequency is the key parameter in identifying the AE source mechanism.•The characteristic frequency of each failure mode is determined.
doi_str_mv 10.1016/j.surfcoat.2015.01.014
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677985290</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0257897215000201</els_id><sourcerecordid>1677985290</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-7b35edd7656c6befeb1c9f71a883cb85cda7fa39e0c6c0d03469733acec4f3f73</originalsourceid><addsrcrecordid>eNqFkMFu2zAMhoViBZqlfYVCx12cSpFt2TttCJa1QIBd1rNA01Sq1LEz0RngZ-hLT162cwECBMj_J35-QtxrtdJKlw-HFZ-jxwHG1VrpYqV0qvxKLHRl68yY3H4QC7UubFbVdn0jPjIflFLa1vlCvG0j_TpTj5MEliBfaZIniHCkkaIMvWwDYwzH0MMY-r0cX0h6CN05khynE7Ec_DyMR-hkAzGGZJuzJDF_lpvuzPMh6KGbOPxVAw5pGFDSMTCHoZcc9mnPt-Lap0Z3__pSPG-__dw8Zrsf3582X3cZ5roYM9uYgtrWlkWJZUOeGo21txqqymBTFdiC9WBqUliiapXJy9oaA0iYe-OtWYpPl7unOKTfeXQpCFLXQU8pmtOltXVVrGuVpOVFinFgjuTdKcGAODmt3EzfHdx_-m6m75ROlSfjl4uR0iO_ExTHGBJmakMkHF07hPdO_AFPR5ZO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1677985290</pqid></control><display><type>article</type><title>Frequency as a key parameter in discriminating the failure types of thermal barrier coatings: Cluster analysis of acoustic emission signals</title><source>Elsevier ScienceDirect Journals</source><creator>Yang, L. ; Kang, H.S. ; Zhou, Y.C. ; Zhu, W. ; Cai, C.Y. ; Lu, C.</creator><creatorcontrib>Yang, L. ; Kang, H.S. ; Zhou, Y.C. ; Zhu, W. ; Cai, C.Y. ; Lu, C.</creatorcontrib><description>A key parameter in discriminating the failure types of thermal barrier coatings (TBCs) was found out by using the k-means cluster analysis of acoustic emission (AE) signals. It is shown that there are five classes of mechanisms, including surface vertical cracks, opening interface cracks, sliding interface cracks, substrate deformation and macroscopic cleavage or spallation. Except for the last one, the other four classes can be clearly distinguished from their peak frequency distributions in the ranges of 170–250, 400–500, 260–350 and 40–150kHz, respectively. However, AE signals overlap with each other in other parameter spaces, e.g., amplitude, energy, rise time, and duration time. The results indicate that the frequency can be applied to identify the AE source mechanisms in TBCs. •Five failure modes in TBCs are discriminated by the k-means cluster analysis of AE signals.•Frequency is the key parameter in identifying the AE source mechanism.•The characteristic frequency of each failure mode is determined.</description><identifier>ISSN: 0257-8972</identifier><identifier>EISSN: 1879-3347</identifier><identifier>DOI: 10.1016/j.surfcoat.2015.01.014</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Acoustic emission ; Cleavage ; Cluster analysis ; Coatings ; Cracks ; Failure analysis ; k-Means clustering ; Key parameter ; Peak frequency ; Spallation ; Thermal barrier coatings</subject><ispartof>Surface &amp; coatings technology, 2015-02, Vol.264, p.97-104</ispartof><rights>2015 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-7b35edd7656c6befeb1c9f71a883cb85cda7fa39e0c6c0d03469733acec4f3f73</citedby><cites>FETCH-LOGICAL-c415t-7b35edd7656c6befeb1c9f71a883cb85cda7fa39e0c6c0d03469733acec4f3f73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0257897215000201$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Yang, L.</creatorcontrib><creatorcontrib>Kang, H.S.</creatorcontrib><creatorcontrib>Zhou, Y.C.</creatorcontrib><creatorcontrib>Zhu, W.</creatorcontrib><creatorcontrib>Cai, C.Y.</creatorcontrib><creatorcontrib>Lu, C.</creatorcontrib><title>Frequency as a key parameter in discriminating the failure types of thermal barrier coatings: Cluster analysis of acoustic emission signals</title><title>Surface &amp; coatings technology</title><description>A key parameter in discriminating the failure types of thermal barrier coatings (TBCs) was found out by using the k-means cluster analysis of acoustic emission (AE) signals. It is shown that there are five classes of mechanisms, including surface vertical cracks, opening interface cracks, sliding interface cracks, substrate deformation and macroscopic cleavage or spallation. Except for the last one, the other four classes can be clearly distinguished from their peak frequency distributions in the ranges of 170–250, 400–500, 260–350 and 40–150kHz, respectively. However, AE signals overlap with each other in other parameter spaces, e.g., amplitude, energy, rise time, and duration time. The results indicate that the frequency can be applied to identify the AE source mechanisms in TBCs. •Five failure modes in TBCs are discriminated by the k-means cluster analysis of AE signals.•Frequency is the key parameter in identifying the AE source mechanism.•The characteristic frequency of each failure mode is determined.</description><subject>Acoustic emission</subject><subject>Cleavage</subject><subject>Cluster analysis</subject><subject>Coatings</subject><subject>Cracks</subject><subject>Failure analysis</subject><subject>k-Means clustering</subject><subject>Key parameter</subject><subject>Peak frequency</subject><subject>Spallation</subject><subject>Thermal barrier coatings</subject><issn>0257-8972</issn><issn>1879-3347</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkMFu2zAMhoViBZqlfYVCx12cSpFt2TttCJa1QIBd1rNA01Sq1LEz0RngZ-hLT162cwECBMj_J35-QtxrtdJKlw-HFZ-jxwHG1VrpYqV0qvxKLHRl68yY3H4QC7UubFbVdn0jPjIflFLa1vlCvG0j_TpTj5MEliBfaZIniHCkkaIMvWwDYwzH0MMY-r0cX0h6CN05khynE7Ec_DyMR-hkAzGGZJuzJDF_lpvuzPMh6KGbOPxVAw5pGFDSMTCHoZcc9mnPt-Lap0Z3__pSPG-__dw8Zrsf3582X3cZ5roYM9uYgtrWlkWJZUOeGo21txqqymBTFdiC9WBqUliiapXJy9oaA0iYe-OtWYpPl7unOKTfeXQpCFLXQU8pmtOltXVVrGuVpOVFinFgjuTdKcGAODmt3EzfHdx_-m6m75ROlSfjl4uR0iO_ExTHGBJmakMkHF07hPdO_AFPR5ZO</recordid><startdate>20150225</startdate><enddate>20150225</enddate><creator>Yang, L.</creator><creator>Kang, H.S.</creator><creator>Zhou, Y.C.</creator><creator>Zhu, W.</creator><creator>Cai, C.Y.</creator><creator>Lu, C.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20150225</creationdate><title>Frequency as a key parameter in discriminating the failure types of thermal barrier coatings: Cluster analysis of acoustic emission signals</title><author>Yang, L. ; Kang, H.S. ; Zhou, Y.C. ; Zhu, W. ; Cai, C.Y. ; Lu, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-7b35edd7656c6befeb1c9f71a883cb85cda7fa39e0c6c0d03469733acec4f3f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Acoustic emission</topic><topic>Cleavage</topic><topic>Cluster analysis</topic><topic>Coatings</topic><topic>Cracks</topic><topic>Failure analysis</topic><topic>k-Means clustering</topic><topic>Key parameter</topic><topic>Peak frequency</topic><topic>Spallation</topic><topic>Thermal barrier coatings</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, L.</creatorcontrib><creatorcontrib>Kang, H.S.</creatorcontrib><creatorcontrib>Zhou, Y.C.</creatorcontrib><creatorcontrib>Zhu, W.</creatorcontrib><creatorcontrib>Cai, C.Y.</creatorcontrib><creatorcontrib>Lu, C.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Surface &amp; coatings technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, L.</au><au>Kang, H.S.</au><au>Zhou, Y.C.</au><au>Zhu, W.</au><au>Cai, C.Y.</au><au>Lu, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Frequency as a key parameter in discriminating the failure types of thermal barrier coatings: Cluster analysis of acoustic emission signals</atitle><jtitle>Surface &amp; coatings technology</jtitle><date>2015-02-25</date><risdate>2015</risdate><volume>264</volume><spage>97</spage><epage>104</epage><pages>97-104</pages><issn>0257-8972</issn><eissn>1879-3347</eissn><abstract>A key parameter in discriminating the failure types of thermal barrier coatings (TBCs) was found out by using the k-means cluster analysis of acoustic emission (AE) signals. It is shown that there are five classes of mechanisms, including surface vertical cracks, opening interface cracks, sliding interface cracks, substrate deformation and macroscopic cleavage or spallation. Except for the last one, the other four classes can be clearly distinguished from their peak frequency distributions in the ranges of 170–250, 400–500, 260–350 and 40–150kHz, respectively. However, AE signals overlap with each other in other parameter spaces, e.g., amplitude, energy, rise time, and duration time. The results indicate that the frequency can be applied to identify the AE source mechanisms in TBCs. •Five failure modes in TBCs are discriminated by the k-means cluster analysis of AE signals.•Frequency is the key parameter in identifying the AE source mechanism.•The characteristic frequency of each failure mode is determined.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.surfcoat.2015.01.014</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0257-8972
ispartof Surface & coatings technology, 2015-02, Vol.264, p.97-104
issn 0257-8972
1879-3347
language eng
recordid cdi_proquest_miscellaneous_1677985290
source Elsevier ScienceDirect Journals
subjects Acoustic emission
Cleavage
Cluster analysis
Coatings
Cracks
Failure analysis
k-Means clustering
Key parameter
Peak frequency
Spallation
Thermal barrier coatings
title Frequency as a key parameter in discriminating the failure types of thermal barrier coatings: Cluster analysis of acoustic emission signals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T06%3A59%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Frequency%20as%20a%20key%20parameter%20in%20discriminating%20the%20failure%20types%20of%20thermal%20barrier%20coatings:%20Cluster%20analysis%20of%20acoustic%20emission%20signals&rft.jtitle=Surface%20&%20coatings%20technology&rft.au=Yang,%20L.&rft.date=2015-02-25&rft.volume=264&rft.spage=97&rft.epage=104&rft.pages=97-104&rft.issn=0257-8972&rft.eissn=1879-3347&rft_id=info:doi/10.1016/j.surfcoat.2015.01.014&rft_dat=%3Cproquest_cross%3E1677985290%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1677985290&rft_id=info:pmid/&rft_els_id=S0257897215000201&rfr_iscdi=true