Transient response of carbon nanotube integrated circuits

The speed of frequency response of all published carbon nanotube (CNT) integrated circuits (ICs) is far from that predicted. The transient response of CNT ICs is explored systematically through the combination of experimental and simulation methods. Complementary field-effect-transistor (FET) based...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano research 2015-03, Vol.8 (3), p.1005-1016
Hauptverfasser: Zhang, Panpan, Yang, Yingjun, Pei, Tian, Qiu, Chenguang, Ding, Li, Liang, Shibo, Zhang, Zhiyong, Peng, Lianmao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1016
container_issue 3
container_start_page 1005
container_title Nano research
container_volume 8
creator Zhang, Panpan
Yang, Yingjun
Pei, Tian
Qiu, Chenguang
Ding, Li
Liang, Shibo
Zhang, Zhiyong
Peng, Lianmao
description The speed of frequency response of all published carbon nanotube (CNT) integrated circuits (ICs) is far from that predicted. The transient response of CNT ICs is explored systematically through the combination of experimental and simulation methods. Complementary field-effect-transistor (FET) based inverters were fabricated on a single semiconducting CNT, and the dynamic response measurement indicates that it can only work at an unexpectedly low speed, i.e. with a large propagation delay of 30 }_ts. Owing to the larger output resistance of CNT FETs, the existence of parasitic capacitances should induce much larger resistive-capacitive (RC) delay than that in Si ICs. Through detailed analysis combining simulation and experimental measurements, several kinds of parasitic capacitances dragging down the actual speed of CNT FET ICs are identified one by one, and each of them limits the speed at different levels through RC delay. It is found that the parasitic capacitance from the measurement system is the dominant one, and the large RC delay lowers the speed of CNT FETs logic circuits to only several kHz which is similar to the experimental results. Various optimized schemes are suggested and demonstrated to minimize the effect of parasitic capacitances, and thus improve the speed of CNT ICs.
doi_str_mv 10.1007/s12274-014-0582-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677985288</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>665110620</cqvip_id><sourcerecordid>1677985288</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-fb93e4f5c62e1552bf49f81bf4e28f0e3206b2c6a4f2f14b0bc21b27be66d0e63</originalsourceid><addsrcrecordid>eNp9kU1PwzAMhiMEEuPjB3Cr4MKlEKdpmh7RxJc0ics4R0nmjE5bsiXtgX9Ppg6EOGDJsg_Pa1uvCbkCegeUNvcJGGt4SSFnLVlJj8gE2laWNMfxdw-Mn5KzlFaUCgZcTkg7j9qnDn1fREzb4BMWwRVWRxN84bUP_WCw6HyPy6h7XBS2i3bo-nRBTpxeJ7w81HPy_vQ4n76Us7fn1-nDrLSci750pq2Qu9oKhlDXzDjeOgm5IJOOYsWoMMwKzR1zwA01loFhjUEhFhRFdU5ux7nbGHYDpl5tumRxvdYew5AUiKZpZc2kzOjNH3QVhujzdZkSrJJNRXmmYKRsDClFdGobu42Onwqo2pupRjNVNlPtzVQ0a9ioSZn1S4y_Jv8juj4s-gh-ucu6n01C1AD5B7T6An_ygdU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1662387304</pqid></control><display><type>article</type><title>Transient response of carbon nanotube integrated circuits</title><source>SpringerNature Journals</source><creator>Zhang, Panpan ; Yang, Yingjun ; Pei, Tian ; Qiu, Chenguang ; Ding, Li ; Liang, Shibo ; Zhang, Zhiyong ; Peng, Lianmao</creator><creatorcontrib>Zhang, Panpan ; Yang, Yingjun ; Pei, Tian ; Qiu, Chenguang ; Ding, Li ; Liang, Shibo ; Zhang, Zhiyong ; Peng, Lianmao</creatorcontrib><description>The speed of frequency response of all published carbon nanotube (CNT) integrated circuits (ICs) is far from that predicted. The transient response of CNT ICs is explored systematically through the combination of experimental and simulation methods. Complementary field-effect-transistor (FET) based inverters were fabricated on a single semiconducting CNT, and the dynamic response measurement indicates that it can only work at an unexpectedly low speed, i.e. with a large propagation delay of 30 }_ts. Owing to the larger output resistance of CNT FETs, the existence of parasitic capacitances should induce much larger resistive-capacitive (RC) delay than that in Si ICs. Through detailed analysis combining simulation and experimental measurements, several kinds of parasitic capacitances dragging down the actual speed of CNT FET ICs are identified one by one, and each of them limits the speed at different levels through RC delay. It is found that the parasitic capacitance from the measurement system is the dominant one, and the large RC delay lowers the speed of CNT FETs logic circuits to only several kHz which is similar to the experimental results. Various optimized schemes are suggested and demonstrated to minimize the effect of parasitic capacitances, and thus improve the speed of CNT ICs.</description><identifier>ISSN: 1998-0124</identifier><identifier>EISSN: 1998-0000</identifier><identifier>DOI: 10.1007/s12274-014-0582-0</identifier><language>eng</language><publisher>Heidelberg: Tsinghua University Press</publisher><subject>Atomic/Molecular Structure and Spectra ; Biomedicine ; Biotechnology ; Carbon ; Carbon nanotubes ; Chemistry and Materials Science ; CMOS ; Condensed Matter Physics ; Delay ; Dynamic response ; Electrons ; Glass transition temperature ; Integrated circuits ; Low speed ; Materials Science ; Nanotechnology ; Propagation ; RC延迟 ; Research Article ; Silicon ; Simulation ; Transient responses ; Transistors ; 场效应晶体管 ; 实验测量 ; 寄生电容 ; 瞬态响应 ; 硅集成电路 ; 碳纳米管 ; 限制速度</subject><ispartof>Nano research, 2015-03, Vol.8 (3), p.1005-1016</ispartof><rights>Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-fb93e4f5c62e1552bf49f81bf4e28f0e3206b2c6a4f2f14b0bc21b27be66d0e63</citedby><cites>FETCH-LOGICAL-c446t-fb93e4f5c62e1552bf49f81bf4e28f0e3206b2c6a4f2f14b0bc21b27be66d0e63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/71233X/71233X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12274-014-0582-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12274-014-0582-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Zhang, Panpan</creatorcontrib><creatorcontrib>Yang, Yingjun</creatorcontrib><creatorcontrib>Pei, Tian</creatorcontrib><creatorcontrib>Qiu, Chenguang</creatorcontrib><creatorcontrib>Ding, Li</creatorcontrib><creatorcontrib>Liang, Shibo</creatorcontrib><creatorcontrib>Zhang, Zhiyong</creatorcontrib><creatorcontrib>Peng, Lianmao</creatorcontrib><title>Transient response of carbon nanotube integrated circuits</title><title>Nano research</title><addtitle>Nano Res</addtitle><addtitle>Nano Research</addtitle><description>The speed of frequency response of all published carbon nanotube (CNT) integrated circuits (ICs) is far from that predicted. The transient response of CNT ICs is explored systematically through the combination of experimental and simulation methods. Complementary field-effect-transistor (FET) based inverters were fabricated on a single semiconducting CNT, and the dynamic response measurement indicates that it can only work at an unexpectedly low speed, i.e. with a large propagation delay of 30 }_ts. Owing to the larger output resistance of CNT FETs, the existence of parasitic capacitances should induce much larger resistive-capacitive (RC) delay than that in Si ICs. Through detailed analysis combining simulation and experimental measurements, several kinds of parasitic capacitances dragging down the actual speed of CNT FET ICs are identified one by one, and each of them limits the speed at different levels through RC delay. It is found that the parasitic capacitance from the measurement system is the dominant one, and the large RC delay lowers the speed of CNT FETs logic circuits to only several kHz which is similar to the experimental results. Various optimized schemes are suggested and demonstrated to minimize the effect of parasitic capacitances, and thus improve the speed of CNT ICs.</description><subject>Atomic/Molecular Structure and Spectra</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Carbon</subject><subject>Carbon nanotubes</subject><subject>Chemistry and Materials Science</subject><subject>CMOS</subject><subject>Condensed Matter Physics</subject><subject>Delay</subject><subject>Dynamic response</subject><subject>Electrons</subject><subject>Glass transition temperature</subject><subject>Integrated circuits</subject><subject>Low speed</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Propagation</subject><subject>RC延迟</subject><subject>Research Article</subject><subject>Silicon</subject><subject>Simulation</subject><subject>Transient responses</subject><subject>Transistors</subject><subject>场效应晶体管</subject><subject>实验测量</subject><subject>寄生电容</subject><subject>瞬态响应</subject><subject>硅集成电路</subject><subject>碳纳米管</subject><subject>限制速度</subject><issn>1998-0124</issn><issn>1998-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU1PwzAMhiMEEuPjB3Cr4MKlEKdpmh7RxJc0ics4R0nmjE5bsiXtgX9Ppg6EOGDJsg_Pa1uvCbkCegeUNvcJGGt4SSFnLVlJj8gE2laWNMfxdw-Mn5KzlFaUCgZcTkg7j9qnDn1fREzb4BMWwRVWRxN84bUP_WCw6HyPy6h7XBS2i3bo-nRBTpxeJ7w81HPy_vQ4n76Us7fn1-nDrLSci750pq2Qu9oKhlDXzDjeOgm5IJOOYsWoMMwKzR1zwA01loFhjUEhFhRFdU5ux7nbGHYDpl5tumRxvdYew5AUiKZpZc2kzOjNH3QVhujzdZkSrJJNRXmmYKRsDClFdGobu42Onwqo2pupRjNVNlPtzVQ0a9ioSZn1S4y_Jv8juj4s-gh-ucu6n01C1AD5B7T6An_ygdU</recordid><startdate>20150301</startdate><enddate>20150301</enddate><creator>Zhang, Panpan</creator><creator>Yang, Yingjun</creator><creator>Pei, Tian</creator><creator>Qiu, Chenguang</creator><creator>Ding, Li</creator><creator>Liang, Shibo</creator><creator>Zhang, Zhiyong</creator><creator>Peng, Lianmao</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20150301</creationdate><title>Transient response of carbon nanotube integrated circuits</title><author>Zhang, Panpan ; Yang, Yingjun ; Pei, Tian ; Qiu, Chenguang ; Ding, Li ; Liang, Shibo ; Zhang, Zhiyong ; Peng, Lianmao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-fb93e4f5c62e1552bf49f81bf4e28f0e3206b2c6a4f2f14b0bc21b27be66d0e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Atomic/Molecular Structure and Spectra</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Carbon</topic><topic>Carbon nanotubes</topic><topic>Chemistry and Materials Science</topic><topic>CMOS</topic><topic>Condensed Matter Physics</topic><topic>Delay</topic><topic>Dynamic response</topic><topic>Electrons</topic><topic>Glass transition temperature</topic><topic>Integrated circuits</topic><topic>Low speed</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Propagation</topic><topic>RC延迟</topic><topic>Research Article</topic><topic>Silicon</topic><topic>Simulation</topic><topic>Transient responses</topic><topic>Transistors</topic><topic>场效应晶体管</topic><topic>实验测量</topic><topic>寄生电容</topic><topic>瞬态响应</topic><topic>硅集成电路</topic><topic>碳纳米管</topic><topic>限制速度</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Panpan</creatorcontrib><creatorcontrib>Yang, Yingjun</creatorcontrib><creatorcontrib>Pei, Tian</creatorcontrib><creatorcontrib>Qiu, Chenguang</creatorcontrib><creatorcontrib>Ding, Li</creatorcontrib><creatorcontrib>Liang, Shibo</creatorcontrib><creatorcontrib>Zhang, Zhiyong</creatorcontrib><creatorcontrib>Peng, Lianmao</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>Proquest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nano research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Panpan</au><au>Yang, Yingjun</au><au>Pei, Tian</au><au>Qiu, Chenguang</au><au>Ding, Li</au><au>Liang, Shibo</au><au>Zhang, Zhiyong</au><au>Peng, Lianmao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transient response of carbon nanotube integrated circuits</atitle><jtitle>Nano research</jtitle><stitle>Nano Res</stitle><addtitle>Nano Research</addtitle><date>2015-03-01</date><risdate>2015</risdate><volume>8</volume><issue>3</issue><spage>1005</spage><epage>1016</epage><pages>1005-1016</pages><issn>1998-0124</issn><eissn>1998-0000</eissn><abstract>The speed of frequency response of all published carbon nanotube (CNT) integrated circuits (ICs) is far from that predicted. The transient response of CNT ICs is explored systematically through the combination of experimental and simulation methods. Complementary field-effect-transistor (FET) based inverters were fabricated on a single semiconducting CNT, and the dynamic response measurement indicates that it can only work at an unexpectedly low speed, i.e. with a large propagation delay of 30 }_ts. Owing to the larger output resistance of CNT FETs, the existence of parasitic capacitances should induce much larger resistive-capacitive (RC) delay than that in Si ICs. Through detailed analysis combining simulation and experimental measurements, several kinds of parasitic capacitances dragging down the actual speed of CNT FET ICs are identified one by one, and each of them limits the speed at different levels through RC delay. It is found that the parasitic capacitance from the measurement system is the dominant one, and the large RC delay lowers the speed of CNT FETs logic circuits to only several kHz which is similar to the experimental results. Various optimized schemes are suggested and demonstrated to minimize the effect of parasitic capacitances, and thus improve the speed of CNT ICs.</abstract><cop>Heidelberg</cop><pub>Tsinghua University Press</pub><doi>10.1007/s12274-014-0582-0</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1998-0124
ispartof Nano research, 2015-03, Vol.8 (3), p.1005-1016
issn 1998-0124
1998-0000
language eng
recordid cdi_proquest_miscellaneous_1677985288
source SpringerNature Journals
subjects Atomic/Molecular Structure and Spectra
Biomedicine
Biotechnology
Carbon
Carbon nanotubes
Chemistry and Materials Science
CMOS
Condensed Matter Physics
Delay
Dynamic response
Electrons
Glass transition temperature
Integrated circuits
Low speed
Materials Science
Nanotechnology
Propagation
RC延迟
Research Article
Silicon
Simulation
Transient responses
Transistors
场效应晶体管
实验测量
寄生电容
瞬态响应
硅集成电路
碳纳米管
限制速度
title Transient response of carbon nanotube integrated circuits
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T21%3A47%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transient%20response%20of%20carbon%20nanotube%20integrated%20circuits&rft.jtitle=Nano%20research&rft.au=Zhang,%20Panpan&rft.date=2015-03-01&rft.volume=8&rft.issue=3&rft.spage=1005&rft.epage=1016&rft.pages=1005-1016&rft.issn=1998-0124&rft.eissn=1998-0000&rft_id=info:doi/10.1007/s12274-014-0582-0&rft_dat=%3Cproquest_cross%3E1677985288%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1662387304&rft_id=info:pmid/&rft_cqvip_id=665110620&rfr_iscdi=true