Multi-label classification for colon cancer using histopathological images
ABSTRACT Colon cancer classification has a significant guidance value in clinical diagnoses and medical prognoses. The classification of colon cancers with high accuracy is the premise of efficient treatment. Our task is to build a system for colon cancer detection and classification based on slide...
Gespeichert in:
Veröffentlicht in: | Microscopy research and technique 2013-12, Vol.76 (12), p.1266-1277 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1277 |
---|---|
container_issue | 12 |
container_start_page | 1266 |
container_title | Microscopy research and technique |
container_volume | 76 |
creator | Xu, Yan Jiao, Liping Wang, Siyu Wei, Junsheng Fan, Yubo Lai, Maode Chang, Eric I-chao |
description | ABSTRACT
Colon cancer classification has a significant guidance value in clinical diagnoses and medical prognoses. The classification of colon cancers with high accuracy is the premise of efficient treatment. Our task is to build a system for colon cancer detection and classification based on slide histopathological images. Some former researches focus on single label classification. Through analyzing large amount of colon cancer images, we found that one image may contain cancer regions of multiple types. Therefore, we reformulated the task as multi‐label problem. Four kinds of features (Color Histogram, Gray‐Level Co‐occurrence Matrix, Histogram of Oriented Gradients and Euler number) were introduced to compose our discriminative feature set, extracted from our dataset that includes six single categories and four multi‐label categories. In order to evaluate the performance and make comparison with our multi‐label model, three commonly used multi‐classification methods were designed in our experiment including one‐against‐all SVM (OAA), one‐against‐one SVM (OAO) and multi‐structure SVM. Four indicators (Precision, Recall, F‐measure, and Accuracy) under 3‐fold cross‐validation were used to validate the performance of our approach. Experiment results show that the precision, recall and F‐measure of multi‐label method as 73.7%, 68.2%, and 70.8% with all features, which are higher than the other three classifiers. These results demonstrate the effectiveness and efficiency of our method on colon histopathological images analysis. Microsc. Res. Tech. 76:1266–1277, 2013. © 2013 Wiley Periodicals, Inc. |
doi_str_mv | 10.1002/jemt.22294 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677982876</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1677982876</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4264-4084577333f53c3dc1fedb21d73831eda1f18c352d988d7cb4f441c20efc33693</originalsourceid><addsrcrecordid>eNqNkctOwzAQRS0E4r3hA1AkNmwCHj9ie4kqKFQ8JASCneU6TnFxkxInAv4elwILNrDylefc0cxchPYAHwHG5HjqZt0RIUSxFbQJWIk8_arVheYqV4AfN9BWjFOMATiwdbRBGBDKCrmJRld96HwezNiFzAYTo6-8NZ1v6qxq2sw2ISlrauvarI--nmRPPnbN3HRPqTRJbMj8zExc3EFrlQnR7X692-j-7PRucJ5f3gwvBieXuWWkYDnDknEhKKUVp5aWFipXjgmUgkoKrjRQgbSUk1JJWQo7ZhVjYAl2laW0UHQbHS77ztvmpXex0zMfrQvB1K7po4ZCCCWJFMXfKBOcc1wU4h8oV5yr5QAHv9Bp07d12nlBSYGLFEai9r-ofjxzpZ636Uztu_6-fQJgCbz64N5_6oD1IlW9SFV_pqpHp1d3nyp58qUnZeDefjymfdZpB8H1w_VQD_BQJGakb-kHJtuiCg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1458706222</pqid></control><display><type>article</type><title>Multi-label classification for colon cancer using histopathological images</title><source>Wiley-Blackwell Journals</source><source>MEDLINE</source><creator>Xu, Yan ; Jiao, Liping ; Wang, Siyu ; Wei, Junsheng ; Fan, Yubo ; Lai, Maode ; Chang, Eric I-chao</creator><creatorcontrib>Xu, Yan ; Jiao, Liping ; Wang, Siyu ; Wei, Junsheng ; Fan, Yubo ; Lai, Maode ; Chang, Eric I-chao</creatorcontrib><description>ABSTRACT
Colon cancer classification has a significant guidance value in clinical diagnoses and medical prognoses. The classification of colon cancers with high accuracy is the premise of efficient treatment. Our task is to build a system for colon cancer detection and classification based on slide histopathological images. Some former researches focus on single label classification. Through analyzing large amount of colon cancer images, we found that one image may contain cancer regions of multiple types. Therefore, we reformulated the task as multi‐label problem. Four kinds of features (Color Histogram, Gray‐Level Co‐occurrence Matrix, Histogram of Oriented Gradients and Euler number) were introduced to compose our discriminative feature set, extracted from our dataset that includes six single categories and four multi‐label categories. In order to evaluate the performance and make comparison with our multi‐label model, three commonly used multi‐classification methods were designed in our experiment including one‐against‐all SVM (OAA), one‐against‐one SVM (OAO) and multi‐structure SVM. Four indicators (Precision, Recall, F‐measure, and Accuracy) under 3‐fold cross‐validation were used to validate the performance of our approach. Experiment results show that the precision, recall and F‐measure of multi‐label method as 73.7%, 68.2%, and 70.8% with all features, which are higher than the other three classifiers. These results demonstrate the effectiveness and efficiency of our method on colon histopathological images analysis. Microsc. Res. Tech. 76:1266–1277, 2013. © 2013 Wiley Periodicals, Inc.</description><identifier>ISSN: 1059-910X</identifier><identifier>EISSN: 1097-0029</identifier><identifier>DOI: 10.1002/jemt.22294</identifier><identifier>PMID: 24123468</identifier><identifier>CODEN: MRTEEO</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Adenocarcinoma - classification ; Adenocarcinoma - diagnosis ; Cancer ; Categories ; Classification ; Colon ; colon cancer ; Colorectal Neoplasms - classification ; Colorectal Neoplasms - diagnosis ; Eosine Yellowish-(YS) ; Hematoxylin ; Histograms ; histopathological image ; Humans ; Models, Theoretical ; multi-label ; multi-SVM ; Recall ; Staining and Labeling ; Support vector machines</subject><ispartof>Microscopy research and technique, 2013-12, Vol.76 (12), p.1266-1277</ispartof><rights>Copyright © 2013 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4264-4084577333f53c3dc1fedb21d73831eda1f18c352d988d7cb4f441c20efc33693</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjemt.22294$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjemt.22294$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24123468$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Yan</creatorcontrib><creatorcontrib>Jiao, Liping</creatorcontrib><creatorcontrib>Wang, Siyu</creatorcontrib><creatorcontrib>Wei, Junsheng</creatorcontrib><creatorcontrib>Fan, Yubo</creatorcontrib><creatorcontrib>Lai, Maode</creatorcontrib><creatorcontrib>Chang, Eric I-chao</creatorcontrib><title>Multi-label classification for colon cancer using histopathological images</title><title>Microscopy research and technique</title><addtitle>Microsc. Res. Tech</addtitle><description>ABSTRACT
Colon cancer classification has a significant guidance value in clinical diagnoses and medical prognoses. The classification of colon cancers with high accuracy is the premise of efficient treatment. Our task is to build a system for colon cancer detection and classification based on slide histopathological images. Some former researches focus on single label classification. Through analyzing large amount of colon cancer images, we found that one image may contain cancer regions of multiple types. Therefore, we reformulated the task as multi‐label problem. Four kinds of features (Color Histogram, Gray‐Level Co‐occurrence Matrix, Histogram of Oriented Gradients and Euler number) were introduced to compose our discriminative feature set, extracted from our dataset that includes six single categories and four multi‐label categories. In order to evaluate the performance and make comparison with our multi‐label model, three commonly used multi‐classification methods were designed in our experiment including one‐against‐all SVM (OAA), one‐against‐one SVM (OAO) and multi‐structure SVM. Four indicators (Precision, Recall, F‐measure, and Accuracy) under 3‐fold cross‐validation were used to validate the performance of our approach. Experiment results show that the precision, recall and F‐measure of multi‐label method as 73.7%, 68.2%, and 70.8% with all features, which are higher than the other three classifiers. These results demonstrate the effectiveness and efficiency of our method on colon histopathological images analysis. Microsc. Res. Tech. 76:1266–1277, 2013. © 2013 Wiley Periodicals, Inc.</description><subject>Adenocarcinoma - classification</subject><subject>Adenocarcinoma - diagnosis</subject><subject>Cancer</subject><subject>Categories</subject><subject>Classification</subject><subject>Colon</subject><subject>colon cancer</subject><subject>Colorectal Neoplasms - classification</subject><subject>Colorectal Neoplasms - diagnosis</subject><subject>Eosine Yellowish-(YS)</subject><subject>Hematoxylin</subject><subject>Histograms</subject><subject>histopathological image</subject><subject>Humans</subject><subject>Models, Theoretical</subject><subject>multi-label</subject><subject>multi-SVM</subject><subject>Recall</subject><subject>Staining and Labeling</subject><subject>Support vector machines</subject><issn>1059-910X</issn><issn>1097-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkctOwzAQRS0E4r3hA1AkNmwCHj9ie4kqKFQ8JASCneU6TnFxkxInAv4elwILNrDylefc0cxchPYAHwHG5HjqZt0RIUSxFbQJWIk8_arVheYqV4AfN9BWjFOMATiwdbRBGBDKCrmJRld96HwezNiFzAYTo6-8NZ1v6qxq2sw2ISlrauvarI--nmRPPnbN3HRPqTRJbMj8zExc3EFrlQnR7X692-j-7PRucJ5f3gwvBieXuWWkYDnDknEhKKUVp5aWFipXjgmUgkoKrjRQgbSUk1JJWQo7ZhVjYAl2laW0UHQbHS77ztvmpXex0zMfrQvB1K7po4ZCCCWJFMXfKBOcc1wU4h8oV5yr5QAHv9Bp07d12nlBSYGLFEai9r-ofjxzpZ636Uztu_6-fQJgCbz64N5_6oD1IlW9SFV_pqpHp1d3nyp58qUnZeDefjymfdZpB8H1w_VQD_BQJGakb-kHJtuiCg</recordid><startdate>201312</startdate><enddate>201312</enddate><creator>Xu, Yan</creator><creator>Jiao, Liping</creator><creator>Wang, Siyu</creator><creator>Wei, Junsheng</creator><creator>Fan, Yubo</creator><creator>Lai, Maode</creator><creator>Chang, Eric I-chao</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U7</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>201312</creationdate><title>Multi-label classification for colon cancer using histopathological images</title><author>Xu, Yan ; Jiao, Liping ; Wang, Siyu ; Wei, Junsheng ; Fan, Yubo ; Lai, Maode ; Chang, Eric I-chao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4264-4084577333f53c3dc1fedb21d73831eda1f18c352d988d7cb4f441c20efc33693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adenocarcinoma - classification</topic><topic>Adenocarcinoma - diagnosis</topic><topic>Cancer</topic><topic>Categories</topic><topic>Classification</topic><topic>Colon</topic><topic>colon cancer</topic><topic>Colorectal Neoplasms - classification</topic><topic>Colorectal Neoplasms - diagnosis</topic><topic>Eosine Yellowish-(YS)</topic><topic>Hematoxylin</topic><topic>Histograms</topic><topic>histopathological image</topic><topic>Humans</topic><topic>Models, Theoretical</topic><topic>multi-label</topic><topic>multi-SVM</topic><topic>Recall</topic><topic>Staining and Labeling</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Yan</creatorcontrib><creatorcontrib>Jiao, Liping</creatorcontrib><creatorcontrib>Wang, Siyu</creatorcontrib><creatorcontrib>Wei, Junsheng</creatorcontrib><creatorcontrib>Fan, Yubo</creatorcontrib><creatorcontrib>Lai, Maode</creatorcontrib><creatorcontrib>Chang, Eric I-chao</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Microscopy research and technique</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Yan</au><au>Jiao, Liping</au><au>Wang, Siyu</au><au>Wei, Junsheng</au><au>Fan, Yubo</au><au>Lai, Maode</au><au>Chang, Eric I-chao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-label classification for colon cancer using histopathological images</atitle><jtitle>Microscopy research and technique</jtitle><addtitle>Microsc. Res. Tech</addtitle><date>2013-12</date><risdate>2013</risdate><volume>76</volume><issue>12</issue><spage>1266</spage><epage>1277</epage><pages>1266-1277</pages><issn>1059-910X</issn><eissn>1097-0029</eissn><coden>MRTEEO</coden><abstract>ABSTRACT
Colon cancer classification has a significant guidance value in clinical diagnoses and medical prognoses. The classification of colon cancers with high accuracy is the premise of efficient treatment. Our task is to build a system for colon cancer detection and classification based on slide histopathological images. Some former researches focus on single label classification. Through analyzing large amount of colon cancer images, we found that one image may contain cancer regions of multiple types. Therefore, we reformulated the task as multi‐label problem. Four kinds of features (Color Histogram, Gray‐Level Co‐occurrence Matrix, Histogram of Oriented Gradients and Euler number) were introduced to compose our discriminative feature set, extracted from our dataset that includes six single categories and four multi‐label categories. In order to evaluate the performance and make comparison with our multi‐label model, three commonly used multi‐classification methods were designed in our experiment including one‐against‐all SVM (OAA), one‐against‐one SVM (OAO) and multi‐structure SVM. Four indicators (Precision, Recall, F‐measure, and Accuracy) under 3‐fold cross‐validation were used to validate the performance of our approach. Experiment results show that the precision, recall and F‐measure of multi‐label method as 73.7%, 68.2%, and 70.8% with all features, which are higher than the other three classifiers. These results demonstrate the effectiveness and efficiency of our method on colon histopathological images analysis. Microsc. Res. Tech. 76:1266–1277, 2013. © 2013 Wiley Periodicals, Inc.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>24123468</pmid><doi>10.1002/jemt.22294</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1059-910X |
ispartof | Microscopy research and technique, 2013-12, Vol.76 (12), p.1266-1277 |
issn | 1059-910X 1097-0029 |
language | eng |
recordid | cdi_proquest_miscellaneous_1677982876 |
source | Wiley-Blackwell Journals; MEDLINE |
subjects | Adenocarcinoma - classification Adenocarcinoma - diagnosis Cancer Categories Classification Colon colon cancer Colorectal Neoplasms - classification Colorectal Neoplasms - diagnosis Eosine Yellowish-(YS) Hematoxylin Histograms histopathological image Humans Models, Theoretical multi-label multi-SVM Recall Staining and Labeling Support vector machines |
title | Multi-label classification for colon cancer using histopathological images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T09%3A57%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-label%20classification%20for%20colon%20cancer%20using%20histopathological%20images&rft.jtitle=Microscopy%20research%20and%20technique&rft.au=Xu,%20Yan&rft.date=2013-12&rft.volume=76&rft.issue=12&rft.spage=1266&rft.epage=1277&rft.pages=1266-1277&rft.issn=1059-910X&rft.eissn=1097-0029&rft.coden=MRTEEO&rft_id=info:doi/10.1002/jemt.22294&rft_dat=%3Cproquest_pubme%3E1677982876%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1458706222&rft_id=info:pmid/24123468&rfr_iscdi=true |