A nested heuristic for parameter tuning in Support Vector Machines
The default approach for tuning the parameters of a Support Vector Machine (SVM) is a grid search in the parameter space. Different metaheuristics have been recently proposed as a more efficient alternative, but they have only shown to be useful in models with a low number of parameters. Complex mod...
Gespeichert in:
Veröffentlicht in: | Computers & operations research 2014-03, Vol.43, p.328-334 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 334 |
---|---|
container_issue | |
container_start_page | 328 |
container_title | Computers & operations research |
container_volume | 43 |
creator | Carrizosa, Emilio Martín-Barragán, Belén Romero Morales, Dolores |
description | The default approach for tuning the parameters of a Support Vector Machine (SVM) is a grid search in the parameter space. Different metaheuristics have been recently proposed as a more efficient alternative, but they have only shown to be useful in models with a low number of parameters. Complex models, involving many parameters, can be seen as extensions of simpler and easy-to-tune models, yielding a nested sequence of models of increasing complexity. In this paper we propose an algorithm which successfully exploits this nested property, with two main advantages versus the state of the art. First, our framework is general enough to allow one to address, with the very same method, several popular SVM parameter models encountered in the literature. Second, as algorithmic requirements we only need either an SVM library or any routine for the minimization of convex quadratic functions under linear constraints. In the computational study, we address Multiple Kernel Learning tuning problems for which grid search clearly would be infeasible, while our classification accuracy is comparable to that of ad hoc model-dependent benchmark tuning methods. |
doi_str_mv | 10.1016/j.cor.2013.10.002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677982191</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0305054813002979</els_id><sourcerecordid>1567106193</sourcerecordid><originalsourceid>FETCH-LOGICAL-c528t-f1d82a4dd44c75aea020efaf4e4c1148d2f99b487938623142cec64498d298d73</originalsourceid><addsrcrecordid>eNqNkc1qGzEUhUVJoI7TB-huIASyGVdX0uiHrhyTJgWHLNKW7oSquRPL2DMTaSaQt69cmy6ySCIQQtJ3zr3SIeQz0BlQkF_WM9_FGaPA835GKftAJqAVL5Wsfh-RCeW0Kmkl9EdyktKa5qEYTMjlvGgxDVgXKxxjSEPwRdPFonfRbXHAWAxjG9qHIrTF_dj3XRyKX-iHjNw6vwpZfEqOG7dJ-OmwTsnPb1c_Fjfl8u76-2K-LH3F9FA2UGvmRF0L4VXl0FFGsXGNQOEBhK5ZY8wfoZXhWjIOgnn0UgiTb_JUfEou9r597B7H3LTdhuRxs3EtdmOyIJUymoGBt9FKKqASDH8HyqlRUupdA2cv0HU3xja_2YKQhoIW_2rDnvKxSyliY_sYti4-W6B2l5Vd25yV3WW1O8pZZc35wdkl7zZNdK0P6b-QaZ7NK5G5r3sO8z8_BYw2-YCtxzrEHIqtu_BKlb-PwaZ-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1469018491</pqid></control><display><type>article</type><title>A nested heuristic for parameter tuning in Support Vector Machines</title><source>Elsevier ScienceDirect Journals</source><creator>Carrizosa, Emilio ; Martín-Barragán, Belén ; Romero Morales, Dolores</creator><creatorcontrib>Carrizosa, Emilio ; Martín-Barragán, Belén ; Romero Morales, Dolores</creatorcontrib><description>The default approach for tuning the parameters of a Support Vector Machine (SVM) is a grid search in the parameter space. Different metaheuristics have been recently proposed as a more efficient alternative, but they have only shown to be useful in models with a low number of parameters. Complex models, involving many parameters, can be seen as extensions of simpler and easy-to-tune models, yielding a nested sequence of models of increasing complexity. In this paper we propose an algorithm which successfully exploits this nested property, with two main advantages versus the state of the art. First, our framework is general enough to allow one to address, with the very same method, several popular SVM parameter models encountered in the literature. Second, as algorithmic requirements we only need either an SVM library or any routine for the minimization of convex quadratic functions under linear constraints. In the computational study, we address Multiple Kernel Learning tuning problems for which grid search clearly would be infeasible, while our classification accuracy is comparable to that of ad hoc model-dependent benchmark tuning methods.</description><identifier>ISSN: 0305-0548</identifier><identifier>EISSN: 1873-765X</identifier><identifier>EISSN: 0305-0548</identifier><identifier>DOI: 10.1016/j.cor.2013.10.002</identifier><identifier>CODEN: CMORAP</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Algorithms ; Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Computer simulation ; Data processing. List processing. Character string processing ; Exact sciences and technology ; Heuristic ; Learning and adaptive systems ; Libraries ; Mathematical functions ; Mathematical models ; Mathematical problems ; Memory organisation. Data processing ; Multiple kernel learning ; Nested heuristic ; Operations research ; Parameter tuning ; Searching ; Software ; State of the art ; Studies ; Supervised classification ; Support Vector Machines ; Theoretical computing ; Tuning ; Variable neighborhood search</subject><ispartof>Computers & operations research, 2014-03, Vol.43, p.328-334</ispartof><rights>2013 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Pergamon Press Inc. Mar 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c528t-f1d82a4dd44c75aea020efaf4e4c1148d2f99b487938623142cec64498d298d73</citedby><cites>FETCH-LOGICAL-c528t-f1d82a4dd44c75aea020efaf4e4c1148d2f99b487938623142cec64498d298d73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0305054813002979$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28301854$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Carrizosa, Emilio</creatorcontrib><creatorcontrib>Martín-Barragán, Belén</creatorcontrib><creatorcontrib>Romero Morales, Dolores</creatorcontrib><title>A nested heuristic for parameter tuning in Support Vector Machines</title><title>Computers & operations research</title><description>The default approach for tuning the parameters of a Support Vector Machine (SVM) is a grid search in the parameter space. Different metaheuristics have been recently proposed as a more efficient alternative, but they have only shown to be useful in models with a low number of parameters. Complex models, involving many parameters, can be seen as extensions of simpler and easy-to-tune models, yielding a nested sequence of models of increasing complexity. In this paper we propose an algorithm which successfully exploits this nested property, with two main advantages versus the state of the art. First, our framework is general enough to allow one to address, with the very same method, several popular SVM parameter models encountered in the literature. Second, as algorithmic requirements we only need either an SVM library or any routine for the minimization of convex quadratic functions under linear constraints. In the computational study, we address Multiple Kernel Learning tuning problems for which grid search clearly would be infeasible, while our classification accuracy is comparable to that of ad hoc model-dependent benchmark tuning methods.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Computer simulation</subject><subject>Data processing. List processing. Character string processing</subject><subject>Exact sciences and technology</subject><subject>Heuristic</subject><subject>Learning and adaptive systems</subject><subject>Libraries</subject><subject>Mathematical functions</subject><subject>Mathematical models</subject><subject>Mathematical problems</subject><subject>Memory organisation. Data processing</subject><subject>Multiple kernel learning</subject><subject>Nested heuristic</subject><subject>Operations research</subject><subject>Parameter tuning</subject><subject>Searching</subject><subject>Software</subject><subject>State of the art</subject><subject>Studies</subject><subject>Supervised classification</subject><subject>Support Vector Machines</subject><subject>Theoretical computing</subject><subject>Tuning</subject><subject>Variable neighborhood search</subject><issn>0305-0548</issn><issn>1873-765X</issn><issn>0305-0548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkc1qGzEUhUVJoI7TB-huIASyGVdX0uiHrhyTJgWHLNKW7oSquRPL2DMTaSaQt69cmy6ySCIQQtJ3zr3SIeQz0BlQkF_WM9_FGaPA835GKftAJqAVL5Wsfh-RCeW0Kmkl9EdyktKa5qEYTMjlvGgxDVgXKxxjSEPwRdPFonfRbXHAWAxjG9qHIrTF_dj3XRyKX-iHjNw6vwpZfEqOG7dJ-OmwTsnPb1c_Fjfl8u76-2K-LH3F9FA2UGvmRF0L4VXl0FFGsXGNQOEBhK5ZY8wfoZXhWjIOgnn0UgiTb_JUfEou9r597B7H3LTdhuRxs3EtdmOyIJUymoGBt9FKKqASDH8HyqlRUupdA2cv0HU3xja_2YKQhoIW_2rDnvKxSyliY_sYti4-W6B2l5Vd25yV3WW1O8pZZc35wdkl7zZNdK0P6b-QaZ7NK5G5r3sO8z8_BYw2-YCtxzrEHIqtu_BKlb-PwaZ-</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>Carrizosa, Emilio</creator><creator>Martín-Barragán, Belén</creator><creator>Romero Morales, Dolores</creator><general>Elsevier Ltd</general><general>Elsevier</general><general>Pergamon Press Inc</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7TB</scope><scope>FR3</scope></search><sort><creationdate>20140301</creationdate><title>A nested heuristic for parameter tuning in Support Vector Machines</title><author>Carrizosa, Emilio ; Martín-Barragán, Belén ; Romero Morales, Dolores</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c528t-f1d82a4dd44c75aea020efaf4e4c1148d2f99b487938623142cec64498d298d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Computer simulation</topic><topic>Data processing. List processing. Character string processing</topic><topic>Exact sciences and technology</topic><topic>Heuristic</topic><topic>Learning and adaptive systems</topic><topic>Libraries</topic><topic>Mathematical functions</topic><topic>Mathematical models</topic><topic>Mathematical problems</topic><topic>Memory organisation. Data processing</topic><topic>Multiple kernel learning</topic><topic>Nested heuristic</topic><topic>Operations research</topic><topic>Parameter tuning</topic><topic>Searching</topic><topic>Software</topic><topic>State of the art</topic><topic>Studies</topic><topic>Supervised classification</topic><topic>Support Vector Machines</topic><topic>Theoretical computing</topic><topic>Tuning</topic><topic>Variable neighborhood search</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carrizosa, Emilio</creatorcontrib><creatorcontrib>Martín-Barragán, Belén</creatorcontrib><creatorcontrib>Romero Morales, Dolores</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><jtitle>Computers & operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carrizosa, Emilio</au><au>Martín-Barragán, Belén</au><au>Romero Morales, Dolores</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A nested heuristic for parameter tuning in Support Vector Machines</atitle><jtitle>Computers & operations research</jtitle><date>2014-03-01</date><risdate>2014</risdate><volume>43</volume><spage>328</spage><epage>334</epage><pages>328-334</pages><issn>0305-0548</issn><eissn>1873-765X</eissn><eissn>0305-0548</eissn><coden>CMORAP</coden><abstract>The default approach for tuning the parameters of a Support Vector Machine (SVM) is a grid search in the parameter space. Different metaheuristics have been recently proposed as a more efficient alternative, but they have only shown to be useful in models with a low number of parameters. Complex models, involving many parameters, can be seen as extensions of simpler and easy-to-tune models, yielding a nested sequence of models of increasing complexity. In this paper we propose an algorithm which successfully exploits this nested property, with two main advantages versus the state of the art. First, our framework is general enough to allow one to address, with the very same method, several popular SVM parameter models encountered in the literature. Second, as algorithmic requirements we only need either an SVM library or any routine for the minimization of convex quadratic functions under linear constraints. In the computational study, we address Multiple Kernel Learning tuning problems for which grid search clearly would be infeasible, while our classification accuracy is comparable to that of ad hoc model-dependent benchmark tuning methods.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.cor.2013.10.002</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-0548 |
ispartof | Computers & operations research, 2014-03, Vol.43, p.328-334 |
issn | 0305-0548 1873-765X 0305-0548 |
language | eng |
recordid | cdi_proquest_miscellaneous_1677982191 |
source | Elsevier ScienceDirect Journals |
subjects | Algorithmics. Computability. Computer arithmetics Algorithms Applied sciences Artificial intelligence Computer science control theory systems Computer simulation Data processing. List processing. Character string processing Exact sciences and technology Heuristic Learning and adaptive systems Libraries Mathematical functions Mathematical models Mathematical problems Memory organisation. Data processing Multiple kernel learning Nested heuristic Operations research Parameter tuning Searching Software State of the art Studies Supervised classification Support Vector Machines Theoretical computing Tuning Variable neighborhood search |
title | A nested heuristic for parameter tuning in Support Vector Machines |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T12%3A16%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20nested%20heuristic%20for%20parameter%20tuning%20in%20Support%20Vector%20Machines&rft.jtitle=Computers%20&%20operations%20research&rft.au=Carrizosa,%20Emilio&rft.date=2014-03-01&rft.volume=43&rft.spage=328&rft.epage=334&rft.pages=328-334&rft.issn=0305-0548&rft.eissn=1873-765X&rft.coden=CMORAP&rft_id=info:doi/10.1016/j.cor.2013.10.002&rft_dat=%3Cproquest_cross%3E1567106193%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1469018491&rft_id=info:pmid/&rft_els_id=S0305054813002979&rfr_iscdi=true |