Preparation and performances of Co–Mn spinel coating on a ferritic stainless steel interconnect material for solid oxide fuel cell application
Ferritic stainless steels have become the candidate materials for interconnects of intermediate temperature solid oxide fuel cell (SOFC). The present issues to be solved urgently for the application of ferritic stainless steel interconnects are their rapid increase in contact resistance and Cr poiso...
Gespeichert in:
Veröffentlicht in: | Journal of power sources 2014-04, Vol.252, p.122-129 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 129 |
---|---|
container_issue | |
container_start_page | 122 |
container_title | Journal of power sources |
container_volume | 252 |
creator | Zhang, H.H. Zeng, C.L. |
description | Ferritic stainless steels have become the candidate materials for interconnects of intermediate temperature solid oxide fuel cell (SOFC). The present issues to be solved urgently for the application of ferritic stainless steel interconnects are their rapid increase in contact resistance and Cr poisoning. In the present study, a chloride electrolyte suspension has been developed to electro-deposit a Co–Mn alloy on a type 430 stainless steel, followed by heat treatment at 750 °C in argon and at 800 °C in air to obtain Co–Mn spinel coatings. The experimental results indicate that an adhesive and compact Co–Mn alloy layer can be deposited in the chloride solution. After heat treatment, a complex coating composed of an external MnCo2O4 layer and an inner Cr-rich oxide layer has been formed on 430SS. The coating improves the oxidation resistance of the steel at 800 °C in air, especially in wet air, and inhibits the outward diffusion of Cr from the Cr-rich scale. Moreover, a low contact resistance has been achieved with the application of the spinel coatings.
•Co–Mn alloys are deposited in chloride solutions to protect metallic interconnects.•The Co–Mn alloy is converted into adhesive spinel coatings by heat treatment in air.•Spinel coatings consist of an external MnCo2O4 layer and an inner Cr-rich layer.•spinel coatings inhibit the oxidation of the steel at 800 °C in air and air-10%H2O.•Spinel coatings decrease the area specific electrical resistance of the steel. |
doi_str_mv | 10.1016/j.jpowsour.2013.12.007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677982039</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S037877531301971X</els_id><sourcerecordid>1677982039</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-88cc6140dd9ee328f14d59630cdf13e2334b83b3a73711f04344942a98fbbfbc3</originalsourceid><addsrcrecordid>eNqNkc2KFDEQx4MoOK6-guQieOnefHUnfVMGv2BFD3oO6aQiGTJJm_ToevMRBN_QJzHtrF7XU6XgV_8q8kPoMSU9JXS8PPSHJX-t-VR6RijvKesJkXfQjirJOyaH4S7aES5VJ-XA76MHtR4IIZRKskM_3hdYTDFryAmb5PACxedyNMlCxdnjff71_efbhOsSEkRsc0PTJ7zR2EMpYQ0W19WEFKHW9oJGhbRCsTklsCs-mtYEE3HLxTXH4HC-Dg6wP22BECM2yxKD_XPEQ3TPm1jh0U29QB9fvviwf91dvXv1Zv_8qrNCqrVTytqRCuLcBMCZ8lS4YRo5sc5TDoxzMSs-cyO5pNQTwYWYBDOT8vPsZ8sv0NNz7lLy5xPUVR9D3Y4xCfKpajpKOSlG-HQ7OjAhGOOD_D-UECVZQ8czakuutYDXSwlHU75pSvQmVh_0X7F6E6sp001sG3xys8NUa6IvzVWo_6aZYgORijbu2ZmD9o1fAhRdbYDm1YXSvGiXw22rfgNFX8AS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1524400872</pqid></control><display><type>article</type><title>Preparation and performances of Co–Mn spinel coating on a ferritic stainless steel interconnect material for solid oxide fuel cell application</title><source>Elsevier ScienceDirect Journals</source><creator>Zhang, H.H. ; Zeng, C.L.</creator><creatorcontrib>Zhang, H.H. ; Zeng, C.L.</creatorcontrib><description>Ferritic stainless steels have become the candidate materials for interconnects of intermediate temperature solid oxide fuel cell (SOFC). The present issues to be solved urgently for the application of ferritic stainless steel interconnects are their rapid increase in contact resistance and Cr poisoning. In the present study, a chloride electrolyte suspension has been developed to electro-deposit a Co–Mn alloy on a type 430 stainless steel, followed by heat treatment at 750 °C in argon and at 800 °C in air to obtain Co–Mn spinel coatings. The experimental results indicate that an adhesive and compact Co–Mn alloy layer can be deposited in the chloride solution. After heat treatment, a complex coating composed of an external MnCo2O4 layer and an inner Cr-rich oxide layer has been formed on 430SS. The coating improves the oxidation resistance of the steel at 800 °C in air, especially in wet air, and inhibits the outward diffusion of Cr from the Cr-rich scale. Moreover, a low contact resistance has been achieved with the application of the spinel coatings.
•Co–Mn alloys are deposited in chloride solutions to protect metallic interconnects.•The Co–Mn alloy is converted into adhesive spinel coatings by heat treatment in air.•Spinel coatings consist of an external MnCo2O4 layer and an inner Cr-rich layer.•spinel coatings inhibit the oxidation of the steel at 800 °C in air and air-10%H2O.•Spinel coatings decrease the area specific electrical resistance of the steel.</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/j.jpowsour.2013.12.007</identifier><identifier>CODEN: JPSODZ</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Alloy development ; Alloy steels ; Applied sciences ; Area specific electric resistance ; Chemistry ; Chromium ; Coating ; Cobalt base alloys ; Direct energy conversion and energy accumulation ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Electrochemistry ; Electrodeposition ; Energy ; Energy. Thermal use of fuels ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Ferritic stainless steels ; Fuel cells ; General and physical chemistry ; Interconnect ; Interconnections ; Materials ; Oxidation ; Solid oxide fuel cell ; Solid oxide fuel cells ; Spinel ; Spinel coating ; Study of interfaces</subject><ispartof>Journal of power sources, 2014-04, Vol.252, p.122-129</ispartof><rights>2013 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-88cc6140dd9ee328f14d59630cdf13e2334b83b3a73711f04344942a98fbbfbc3</citedby><cites>FETCH-LOGICAL-c478t-88cc6140dd9ee328f14d59630cdf13e2334b83b3a73711f04344942a98fbbfbc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S037877531301971X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28250781$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, H.H.</creatorcontrib><creatorcontrib>Zeng, C.L.</creatorcontrib><title>Preparation and performances of Co–Mn spinel coating on a ferritic stainless steel interconnect material for solid oxide fuel cell application</title><title>Journal of power sources</title><description>Ferritic stainless steels have become the candidate materials for interconnects of intermediate temperature solid oxide fuel cell (SOFC). The present issues to be solved urgently for the application of ferritic stainless steel interconnects are their rapid increase in contact resistance and Cr poisoning. In the present study, a chloride electrolyte suspension has been developed to electro-deposit a Co–Mn alloy on a type 430 stainless steel, followed by heat treatment at 750 °C in argon and at 800 °C in air to obtain Co–Mn spinel coatings. The experimental results indicate that an adhesive and compact Co–Mn alloy layer can be deposited in the chloride solution. After heat treatment, a complex coating composed of an external MnCo2O4 layer and an inner Cr-rich oxide layer has been formed on 430SS. The coating improves the oxidation resistance of the steel at 800 °C in air, especially in wet air, and inhibits the outward diffusion of Cr from the Cr-rich scale. Moreover, a low contact resistance has been achieved with the application of the spinel coatings.
•Co–Mn alloys are deposited in chloride solutions to protect metallic interconnects.•The Co–Mn alloy is converted into adhesive spinel coatings by heat treatment in air.•Spinel coatings consist of an external MnCo2O4 layer and an inner Cr-rich layer.•spinel coatings inhibit the oxidation of the steel at 800 °C in air and air-10%H2O.•Spinel coatings decrease the area specific electrical resistance of the steel.</description><subject>Alloy development</subject><subject>Alloy steels</subject><subject>Applied sciences</subject><subject>Area specific electric resistance</subject><subject>Chemistry</subject><subject>Chromium</subject><subject>Coating</subject><subject>Cobalt base alloys</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Electrochemistry</subject><subject>Electrodeposition</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Ferritic stainless steels</subject><subject>Fuel cells</subject><subject>General and physical chemistry</subject><subject>Interconnect</subject><subject>Interconnections</subject><subject>Materials</subject><subject>Oxidation</subject><subject>Solid oxide fuel cell</subject><subject>Solid oxide fuel cells</subject><subject>Spinel</subject><subject>Spinel coating</subject><subject>Study of interfaces</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkc2KFDEQx4MoOK6-guQieOnefHUnfVMGv2BFD3oO6aQiGTJJm_ToevMRBN_QJzHtrF7XU6XgV_8q8kPoMSU9JXS8PPSHJX-t-VR6RijvKesJkXfQjirJOyaH4S7aES5VJ-XA76MHtR4IIZRKskM_3hdYTDFryAmb5PACxedyNMlCxdnjff71_efbhOsSEkRsc0PTJ7zR2EMpYQ0W19WEFKHW9oJGhbRCsTklsCs-mtYEE3HLxTXH4HC-Dg6wP22BECM2yxKD_XPEQ3TPm1jh0U29QB9fvviwf91dvXv1Zv_8qrNCqrVTytqRCuLcBMCZ8lS4YRo5sc5TDoxzMSs-cyO5pNQTwYWYBDOT8vPsZ8sv0NNz7lLy5xPUVR9D3Y4xCfKpajpKOSlG-HQ7OjAhGOOD_D-UECVZQ8czakuutYDXSwlHU75pSvQmVh_0X7F6E6sp001sG3xys8NUa6IvzVWo_6aZYgORijbu2ZmD9o1fAhRdbYDm1YXSvGiXw22rfgNFX8AS</recordid><startdate>20140415</startdate><enddate>20140415</enddate><creator>Zhang, H.H.</creator><creator>Zeng, C.L.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7SP</scope><scope>7SR</scope><scope>7SU</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20140415</creationdate><title>Preparation and performances of Co–Mn spinel coating on a ferritic stainless steel interconnect material for solid oxide fuel cell application</title><author>Zhang, H.H. ; Zeng, C.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-88cc6140dd9ee328f14d59630cdf13e2334b83b3a73711f04344942a98fbbfbc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Alloy development</topic><topic>Alloy steels</topic><topic>Applied sciences</topic><topic>Area specific electric resistance</topic><topic>Chemistry</topic><topic>Chromium</topic><topic>Coating</topic><topic>Cobalt base alloys</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Electrochemistry</topic><topic>Electrodeposition</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Ferritic stainless steels</topic><topic>Fuel cells</topic><topic>General and physical chemistry</topic><topic>Interconnect</topic><topic>Interconnections</topic><topic>Materials</topic><topic>Oxidation</topic><topic>Solid oxide fuel cell</topic><topic>Solid oxide fuel cells</topic><topic>Spinel</topic><topic>Spinel coating</topic><topic>Study of interfaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, H.H.</creatorcontrib><creatorcontrib>Zeng, C.L.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, H.H.</au><au>Zeng, C.L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preparation and performances of Co–Mn spinel coating on a ferritic stainless steel interconnect material for solid oxide fuel cell application</atitle><jtitle>Journal of power sources</jtitle><date>2014-04-15</date><risdate>2014</risdate><volume>252</volume><spage>122</spage><epage>129</epage><pages>122-129</pages><issn>0378-7753</issn><eissn>1873-2755</eissn><coden>JPSODZ</coden><abstract>Ferritic stainless steels have become the candidate materials for interconnects of intermediate temperature solid oxide fuel cell (SOFC). The present issues to be solved urgently for the application of ferritic stainless steel interconnects are their rapid increase in contact resistance and Cr poisoning. In the present study, a chloride electrolyte suspension has been developed to electro-deposit a Co–Mn alloy on a type 430 stainless steel, followed by heat treatment at 750 °C in argon and at 800 °C in air to obtain Co–Mn spinel coatings. The experimental results indicate that an adhesive and compact Co–Mn alloy layer can be deposited in the chloride solution. After heat treatment, a complex coating composed of an external MnCo2O4 layer and an inner Cr-rich oxide layer has been formed on 430SS. The coating improves the oxidation resistance of the steel at 800 °C in air, especially in wet air, and inhibits the outward diffusion of Cr from the Cr-rich scale. Moreover, a low contact resistance has been achieved with the application of the spinel coatings.
•Co–Mn alloys are deposited in chloride solutions to protect metallic interconnects.•The Co–Mn alloy is converted into adhesive spinel coatings by heat treatment in air.•Spinel coatings consist of an external MnCo2O4 layer and an inner Cr-rich layer.•spinel coatings inhibit the oxidation of the steel at 800 °C in air and air-10%H2O.•Spinel coatings decrease the area specific electrical resistance of the steel.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jpowsour.2013.12.007</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-7753 |
ispartof | Journal of power sources, 2014-04, Vol.252, p.122-129 |
issn | 0378-7753 1873-2755 |
language | eng |
recordid | cdi_proquest_miscellaneous_1677982039 |
source | Elsevier ScienceDirect Journals |
subjects | Alloy development Alloy steels Applied sciences Area specific electric resistance Chemistry Chromium Coating Cobalt base alloys Direct energy conversion and energy accumulation Electrical engineering. Electrical power engineering Electrical power engineering Electrochemical conversion: primary and secondary batteries, fuel cells Electrochemistry Electrodeposition Energy Energy. Thermal use of fuels Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc Exact sciences and technology Ferritic stainless steels Fuel cells General and physical chemistry Interconnect Interconnections Materials Oxidation Solid oxide fuel cell Solid oxide fuel cells Spinel Spinel coating Study of interfaces |
title | Preparation and performances of Co–Mn spinel coating on a ferritic stainless steel interconnect material for solid oxide fuel cell application |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T22%3A17%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preparation%20and%20performances%20of%20Co%E2%80%93Mn%20spinel%20coating%20on%20a%20ferritic%20stainless%20steel%20interconnect%20material%20for%20solid%20oxide%20fuel%20cell%20application&rft.jtitle=Journal%20of%20power%20sources&rft.au=Zhang,%20H.H.&rft.date=2014-04-15&rft.volume=252&rft.spage=122&rft.epage=129&rft.pages=122-129&rft.issn=0378-7753&rft.eissn=1873-2755&rft.coden=JPSODZ&rft_id=info:doi/10.1016/j.jpowsour.2013.12.007&rft_dat=%3Cproquest_cross%3E1677982039%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1524400872&rft_id=info:pmid/&rft_els_id=S037877531301971X&rfr_iscdi=true |