Preparation and performances of Co–Mn spinel coating on a ferritic stainless steel interconnect material for solid oxide fuel cell application

Ferritic stainless steels have become the candidate materials for interconnects of intermediate temperature solid oxide fuel cell (SOFC). The present issues to be solved urgently for the application of ferritic stainless steel interconnects are their rapid increase in contact resistance and Cr poiso...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of power sources 2014-04, Vol.252, p.122-129
Hauptverfasser: Zhang, H.H., Zeng, C.L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 129
container_issue
container_start_page 122
container_title Journal of power sources
container_volume 252
creator Zhang, H.H.
Zeng, C.L.
description Ferritic stainless steels have become the candidate materials for interconnects of intermediate temperature solid oxide fuel cell (SOFC). The present issues to be solved urgently for the application of ferritic stainless steel interconnects are their rapid increase in contact resistance and Cr poisoning. In the present study, a chloride electrolyte suspension has been developed to electro-deposit a Co–Mn alloy on a type 430 stainless steel, followed by heat treatment at 750 °C in argon and at 800 °C in air to obtain Co–Mn spinel coatings. The experimental results indicate that an adhesive and compact Co–Mn alloy layer can be deposited in the chloride solution. After heat treatment, a complex coating composed of an external MnCo2O4 layer and an inner Cr-rich oxide layer has been formed on 430SS. The coating improves the oxidation resistance of the steel at 800 °C in air, especially in wet air, and inhibits the outward diffusion of Cr from the Cr-rich scale. Moreover, a low contact resistance has been achieved with the application of the spinel coatings. •Co–Mn alloys are deposited in chloride solutions to protect metallic interconnects.•The Co–Mn alloy is converted into adhesive spinel coatings by heat treatment in air.•Spinel coatings consist of an external MnCo2O4 layer and an inner Cr-rich layer.•spinel coatings inhibit the oxidation of the steel at 800 °C in air and air-10%H2O.•Spinel coatings decrease the area specific electrical resistance of the steel.
doi_str_mv 10.1016/j.jpowsour.2013.12.007
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677982039</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S037877531301971X</els_id><sourcerecordid>1677982039</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-88cc6140dd9ee328f14d59630cdf13e2334b83b3a73711f04344942a98fbbfbc3</originalsourceid><addsrcrecordid>eNqNkc2KFDEQx4MoOK6-guQieOnefHUnfVMGv2BFD3oO6aQiGTJJm_ToevMRBN_QJzHtrF7XU6XgV_8q8kPoMSU9JXS8PPSHJX-t-VR6RijvKesJkXfQjirJOyaH4S7aES5VJ-XA76MHtR4IIZRKskM_3hdYTDFryAmb5PACxedyNMlCxdnjff71_efbhOsSEkRsc0PTJ7zR2EMpYQ0W19WEFKHW9oJGhbRCsTklsCs-mtYEE3HLxTXH4HC-Dg6wP22BECM2yxKD_XPEQ3TPm1jh0U29QB9fvviwf91dvXv1Zv_8qrNCqrVTytqRCuLcBMCZ8lS4YRo5sc5TDoxzMSs-cyO5pNQTwYWYBDOT8vPsZ8sv0NNz7lLy5xPUVR9D3Y4xCfKpajpKOSlG-HQ7OjAhGOOD_D-UECVZQ8czakuutYDXSwlHU75pSvQmVh_0X7F6E6sp001sG3xys8NUa6IvzVWo_6aZYgORijbu2ZmD9o1fAhRdbYDm1YXSvGiXw22rfgNFX8AS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1524400872</pqid></control><display><type>article</type><title>Preparation and performances of Co–Mn spinel coating on a ferritic stainless steel interconnect material for solid oxide fuel cell application</title><source>Elsevier ScienceDirect Journals</source><creator>Zhang, H.H. ; Zeng, C.L.</creator><creatorcontrib>Zhang, H.H. ; Zeng, C.L.</creatorcontrib><description>Ferritic stainless steels have become the candidate materials for interconnects of intermediate temperature solid oxide fuel cell (SOFC). The present issues to be solved urgently for the application of ferritic stainless steel interconnects are their rapid increase in contact resistance and Cr poisoning. In the present study, a chloride electrolyte suspension has been developed to electro-deposit a Co–Mn alloy on a type 430 stainless steel, followed by heat treatment at 750 °C in argon and at 800 °C in air to obtain Co–Mn spinel coatings. The experimental results indicate that an adhesive and compact Co–Mn alloy layer can be deposited in the chloride solution. After heat treatment, a complex coating composed of an external MnCo2O4 layer and an inner Cr-rich oxide layer has been formed on 430SS. The coating improves the oxidation resistance of the steel at 800 °C in air, especially in wet air, and inhibits the outward diffusion of Cr from the Cr-rich scale. Moreover, a low contact resistance has been achieved with the application of the spinel coatings. •Co–Mn alloys are deposited in chloride solutions to protect metallic interconnects.•The Co–Mn alloy is converted into adhesive spinel coatings by heat treatment in air.•Spinel coatings consist of an external MnCo2O4 layer and an inner Cr-rich layer.•spinel coatings inhibit the oxidation of the steel at 800 °C in air and air-10%H2O.•Spinel coatings decrease the area specific electrical resistance of the steel.</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/j.jpowsour.2013.12.007</identifier><identifier>CODEN: JPSODZ</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Alloy development ; Alloy steels ; Applied sciences ; Area specific electric resistance ; Chemistry ; Chromium ; Coating ; Cobalt base alloys ; Direct energy conversion and energy accumulation ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Electrochemistry ; Electrodeposition ; Energy ; Energy. Thermal use of fuels ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Ferritic stainless steels ; Fuel cells ; General and physical chemistry ; Interconnect ; Interconnections ; Materials ; Oxidation ; Solid oxide fuel cell ; Solid oxide fuel cells ; Spinel ; Spinel coating ; Study of interfaces</subject><ispartof>Journal of power sources, 2014-04, Vol.252, p.122-129</ispartof><rights>2013 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-88cc6140dd9ee328f14d59630cdf13e2334b83b3a73711f04344942a98fbbfbc3</citedby><cites>FETCH-LOGICAL-c478t-88cc6140dd9ee328f14d59630cdf13e2334b83b3a73711f04344942a98fbbfbc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S037877531301971X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28250781$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, H.H.</creatorcontrib><creatorcontrib>Zeng, C.L.</creatorcontrib><title>Preparation and performances of Co–Mn spinel coating on a ferritic stainless steel interconnect material for solid oxide fuel cell application</title><title>Journal of power sources</title><description>Ferritic stainless steels have become the candidate materials for interconnects of intermediate temperature solid oxide fuel cell (SOFC). The present issues to be solved urgently for the application of ferritic stainless steel interconnects are their rapid increase in contact resistance and Cr poisoning. In the present study, a chloride electrolyte suspension has been developed to electro-deposit a Co–Mn alloy on a type 430 stainless steel, followed by heat treatment at 750 °C in argon and at 800 °C in air to obtain Co–Mn spinel coatings. The experimental results indicate that an adhesive and compact Co–Mn alloy layer can be deposited in the chloride solution. After heat treatment, a complex coating composed of an external MnCo2O4 layer and an inner Cr-rich oxide layer has been formed on 430SS. The coating improves the oxidation resistance of the steel at 800 °C in air, especially in wet air, and inhibits the outward diffusion of Cr from the Cr-rich scale. Moreover, a low contact resistance has been achieved with the application of the spinel coatings. •Co–Mn alloys are deposited in chloride solutions to protect metallic interconnects.•The Co–Mn alloy is converted into adhesive spinel coatings by heat treatment in air.•Spinel coatings consist of an external MnCo2O4 layer and an inner Cr-rich layer.•spinel coatings inhibit the oxidation of the steel at 800 °C in air and air-10%H2O.•Spinel coatings decrease the area specific electrical resistance of the steel.</description><subject>Alloy development</subject><subject>Alloy steels</subject><subject>Applied sciences</subject><subject>Area specific electric resistance</subject><subject>Chemistry</subject><subject>Chromium</subject><subject>Coating</subject><subject>Cobalt base alloys</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Electrochemistry</subject><subject>Electrodeposition</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Ferritic stainless steels</subject><subject>Fuel cells</subject><subject>General and physical chemistry</subject><subject>Interconnect</subject><subject>Interconnections</subject><subject>Materials</subject><subject>Oxidation</subject><subject>Solid oxide fuel cell</subject><subject>Solid oxide fuel cells</subject><subject>Spinel</subject><subject>Spinel coating</subject><subject>Study of interfaces</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkc2KFDEQx4MoOK6-guQieOnefHUnfVMGv2BFD3oO6aQiGTJJm_ToevMRBN_QJzHtrF7XU6XgV_8q8kPoMSU9JXS8PPSHJX-t-VR6RijvKesJkXfQjirJOyaH4S7aES5VJ-XA76MHtR4IIZRKskM_3hdYTDFryAmb5PACxedyNMlCxdnjff71_efbhOsSEkRsc0PTJ7zR2EMpYQ0W19WEFKHW9oJGhbRCsTklsCs-mtYEE3HLxTXH4HC-Dg6wP22BECM2yxKD_XPEQ3TPm1jh0U29QB9fvviwf91dvXv1Zv_8qrNCqrVTytqRCuLcBMCZ8lS4YRo5sc5TDoxzMSs-cyO5pNQTwYWYBDOT8vPsZ8sv0NNz7lLy5xPUVR9D3Y4xCfKpajpKOSlG-HQ7OjAhGOOD_D-UECVZQ8czakuutYDXSwlHU75pSvQmVh_0X7F6E6sp001sG3xys8NUa6IvzVWo_6aZYgORijbu2ZmD9o1fAhRdbYDm1YXSvGiXw22rfgNFX8AS</recordid><startdate>20140415</startdate><enddate>20140415</enddate><creator>Zhang, H.H.</creator><creator>Zeng, C.L.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7SP</scope><scope>7SR</scope><scope>7SU</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20140415</creationdate><title>Preparation and performances of Co–Mn spinel coating on a ferritic stainless steel interconnect material for solid oxide fuel cell application</title><author>Zhang, H.H. ; Zeng, C.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-88cc6140dd9ee328f14d59630cdf13e2334b83b3a73711f04344942a98fbbfbc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Alloy development</topic><topic>Alloy steels</topic><topic>Applied sciences</topic><topic>Area specific electric resistance</topic><topic>Chemistry</topic><topic>Chromium</topic><topic>Coating</topic><topic>Cobalt base alloys</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Electrochemistry</topic><topic>Electrodeposition</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Ferritic stainless steels</topic><topic>Fuel cells</topic><topic>General and physical chemistry</topic><topic>Interconnect</topic><topic>Interconnections</topic><topic>Materials</topic><topic>Oxidation</topic><topic>Solid oxide fuel cell</topic><topic>Solid oxide fuel cells</topic><topic>Spinel</topic><topic>Spinel coating</topic><topic>Study of interfaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, H.H.</creatorcontrib><creatorcontrib>Zeng, C.L.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, H.H.</au><au>Zeng, C.L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preparation and performances of Co–Mn spinel coating on a ferritic stainless steel interconnect material for solid oxide fuel cell application</atitle><jtitle>Journal of power sources</jtitle><date>2014-04-15</date><risdate>2014</risdate><volume>252</volume><spage>122</spage><epage>129</epage><pages>122-129</pages><issn>0378-7753</issn><eissn>1873-2755</eissn><coden>JPSODZ</coden><abstract>Ferritic stainless steels have become the candidate materials for interconnects of intermediate temperature solid oxide fuel cell (SOFC). The present issues to be solved urgently for the application of ferritic stainless steel interconnects are their rapid increase in contact resistance and Cr poisoning. In the present study, a chloride electrolyte suspension has been developed to electro-deposit a Co–Mn alloy on a type 430 stainless steel, followed by heat treatment at 750 °C in argon and at 800 °C in air to obtain Co–Mn spinel coatings. The experimental results indicate that an adhesive and compact Co–Mn alloy layer can be deposited in the chloride solution. After heat treatment, a complex coating composed of an external MnCo2O4 layer and an inner Cr-rich oxide layer has been formed on 430SS. The coating improves the oxidation resistance of the steel at 800 °C in air, especially in wet air, and inhibits the outward diffusion of Cr from the Cr-rich scale. Moreover, a low contact resistance has been achieved with the application of the spinel coatings. •Co–Mn alloys are deposited in chloride solutions to protect metallic interconnects.•The Co–Mn alloy is converted into adhesive spinel coatings by heat treatment in air.•Spinel coatings consist of an external MnCo2O4 layer and an inner Cr-rich layer.•spinel coatings inhibit the oxidation of the steel at 800 °C in air and air-10%H2O.•Spinel coatings decrease the area specific electrical resistance of the steel.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jpowsour.2013.12.007</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0378-7753
ispartof Journal of power sources, 2014-04, Vol.252, p.122-129
issn 0378-7753
1873-2755
language eng
recordid cdi_proquest_miscellaneous_1677982039
source Elsevier ScienceDirect Journals
subjects Alloy development
Alloy steels
Applied sciences
Area specific electric resistance
Chemistry
Chromium
Coating
Cobalt base alloys
Direct energy conversion and energy accumulation
Electrical engineering. Electrical power engineering
Electrical power engineering
Electrochemical conversion: primary and secondary batteries, fuel cells
Electrochemistry
Electrodeposition
Energy
Energy. Thermal use of fuels
Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc
Exact sciences and technology
Ferritic stainless steels
Fuel cells
General and physical chemistry
Interconnect
Interconnections
Materials
Oxidation
Solid oxide fuel cell
Solid oxide fuel cells
Spinel
Spinel coating
Study of interfaces
title Preparation and performances of Co–Mn spinel coating on a ferritic stainless steel interconnect material for solid oxide fuel cell application
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T22%3A17%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preparation%20and%20performances%20of%20Co%E2%80%93Mn%20spinel%20coating%20on%20a%20ferritic%20stainless%20steel%20interconnect%20material%20for%20solid%20oxide%20fuel%20cell%20application&rft.jtitle=Journal%20of%20power%20sources&rft.au=Zhang,%20H.H.&rft.date=2014-04-15&rft.volume=252&rft.spage=122&rft.epage=129&rft.pages=122-129&rft.issn=0378-7753&rft.eissn=1873-2755&rft.coden=JPSODZ&rft_id=info:doi/10.1016/j.jpowsour.2013.12.007&rft_dat=%3Cproquest_cross%3E1677982039%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1524400872&rft_id=info:pmid/&rft_els_id=S037877531301971X&rfr_iscdi=true