A modeling approach for the complete ductile–brittle transition region: cohesive zone in combination with a non-local Gurson-model

The present study deals with the simulation of crack propagation in the ductile–brittle transition region on the macro-scale. In contrast to most studies in the literature, not only the ductile softening by void growth and coalescence is incorporated but also the particular material degradation by c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of fracture 2014-01, Vol.185 (1-2), p.129-153
Hauptverfasser: Hütter, Geralf, Linse, Thomas, Roth, Stephan, Mühlich, Uwe, Kuna, Meinhard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 153
container_issue 1-2
container_start_page 129
container_title International journal of fracture
container_volume 185
creator Hütter, Geralf
Linse, Thomas
Roth, Stephan
Mühlich, Uwe
Kuna, Meinhard
description The present study deals with the simulation of crack propagation in the ductile–brittle transition region on the macro-scale. In contrast to most studies in the literature, not only the ductile softening by void growth and coalescence is incorporated but also the particular material degradation by cleavage. A non-local Gurson-type model is employed together with a cohesive zone to simulate both failure mechanisms simultaneously. This consistent formulation of a boundary value problem allows arbitrary high mesh resolutions. The results show that the model captures qualitative effects of corresponding experiments such as the cleavage initiation in front of a stretch zone, the formation of secondary cracks and possible crack arrest. The influence of the temperature on the predicted toughness is reproduced in the whole ductile–brittle transition region without introducing temperature-dependent fit parameters. A comparison with experimental data shows that the shift of the ductile–brittle transition temperature associated with a lower crack-tip constraint can be predicted quantitatively.
doi_str_mv 10.1007/s10704-013-9914-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677981642</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259829980</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-5f914796d697fa93f0d156d0a140b384acea5aa8367311cf85e254bae319048b3</originalsourceid><addsrcrecordid>eNqFkc2KFDEUhYMo2I4-gLuAGzdx8leVxN0wOKMw4EbXIZW61Z0hnbRJSnFWLnwD39AnMT0tCIK4Olz4zrkcDkLPGX3FKFXnlVFFJaFMEGOYJPIB2rBBCcJHJR6iDRVqJEZy8xg9qfWWUmqUlhv0_QLv8wwxpC12h0PJzu_wkgtuO8A-7w8RGuB59S1E-Pntx1RCaxFwKy7V0EJOuMC2y-tO76CGz4DvcgIc0tE-heTuoS-h7bDDKScSs3cRX6-l9uP--VP0aHGxwrPfeoY-Xr35cPmW3Ly_fnd5cUO80LyRYenNlBnn0ajFGbHQmQ3jTB2TdBJaOg9ucE6LXpkxv-gB-CAnB4IZKvUkztDLU27v-WmF2uw-VA8xugR5rZaNShnNRsn_jw6yf5WjNB198Rd6m9eSehHL-WA0N0bTTrET5UuutcBiDyXsXflqGbXHCe1pQtsntMcJrewefvLUzqYtlD_J_zb9AgaCoDs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259829980</pqid></control><display><type>article</type><title>A modeling approach for the complete ductile–brittle transition region: cohesive zone in combination with a non-local Gurson-model</title><source>SpringerLink Journals - AutoHoldings</source><creator>Hütter, Geralf ; Linse, Thomas ; Roth, Stephan ; Mühlich, Uwe ; Kuna, Meinhard</creator><creatorcontrib>Hütter, Geralf ; Linse, Thomas ; Roth, Stephan ; Mühlich, Uwe ; Kuna, Meinhard</creatorcontrib><description>The present study deals with the simulation of crack propagation in the ductile–brittle transition region on the macro-scale. In contrast to most studies in the literature, not only the ductile softening by void growth and coalescence is incorporated but also the particular material degradation by cleavage. A non-local Gurson-type model is employed together with a cohesive zone to simulate both failure mechanisms simultaneously. This consistent formulation of a boundary value problem allows arbitrary high mesh resolutions. The results show that the model captures qualitative effects of corresponding experiments such as the cleavage initiation in front of a stretch zone, the formation of secondary cracks and possible crack arrest. The influence of the temperature on the predicted toughness is reproduced in the whole ductile–brittle transition region without introducing temperature-dependent fit parameters. A comparison with experimental data shows that the shift of the ductile–brittle transition temperature associated with a lower crack-tip constraint can be predicted quantitatively.</description><identifier>ISSN: 0376-9429</identifier><identifier>EISSN: 1573-2673</identifier><identifier>DOI: 10.1007/s10704-013-9914-4</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Automotive Engineering ; Boundary value problems ; Brittleness ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Civil Engineering ; Classical Mechanics ; Cleavage ; Coalescing ; Cohesion ; Computer simulation ; Crack arrest ; Crack initiation ; Crack propagation ; Crack tips ; Cracks ; Ductile fracture ; Ductile-brittle transition ; Failure mechanisms ; Finite element method ; Fracture mechanics ; Fracture toughness ; Materials Science ; Mathematical models ; Mechanical Engineering ; Original Paper ; Softening ; Temperature dependence ; Transition temperature ; Voids</subject><ispartof>International journal of fracture, 2014-01, Vol.185 (1-2), p.129-153</ispartof><rights>Springer Science+Business Media Dordrecht 2013</rights><rights>International Journal of Fracture is a copyright of Springer, (2013). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-5f914796d697fa93f0d156d0a140b384acea5aa8367311cf85e254bae319048b3</citedby><cites>FETCH-LOGICAL-c382t-5f914796d697fa93f0d156d0a140b384acea5aa8367311cf85e254bae319048b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10704-013-9914-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10704-013-9914-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Hütter, Geralf</creatorcontrib><creatorcontrib>Linse, Thomas</creatorcontrib><creatorcontrib>Roth, Stephan</creatorcontrib><creatorcontrib>Mühlich, Uwe</creatorcontrib><creatorcontrib>Kuna, Meinhard</creatorcontrib><title>A modeling approach for the complete ductile–brittle transition region: cohesive zone in combination with a non-local Gurson-model</title><title>International journal of fracture</title><addtitle>Int J Fract</addtitle><description>The present study deals with the simulation of crack propagation in the ductile–brittle transition region on the macro-scale. In contrast to most studies in the literature, not only the ductile softening by void growth and coalescence is incorporated but also the particular material degradation by cleavage. A non-local Gurson-type model is employed together with a cohesive zone to simulate both failure mechanisms simultaneously. This consistent formulation of a boundary value problem allows arbitrary high mesh resolutions. The results show that the model captures qualitative effects of corresponding experiments such as the cleavage initiation in front of a stretch zone, the formation of secondary cracks and possible crack arrest. The influence of the temperature on the predicted toughness is reproduced in the whole ductile–brittle transition region without introducing temperature-dependent fit parameters. A comparison with experimental data shows that the shift of the ductile–brittle transition temperature associated with a lower crack-tip constraint can be predicted quantitatively.</description><subject>Automotive Engineering</subject><subject>Boundary value problems</subject><subject>Brittleness</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Civil Engineering</subject><subject>Classical Mechanics</subject><subject>Cleavage</subject><subject>Coalescing</subject><subject>Cohesion</subject><subject>Computer simulation</subject><subject>Crack arrest</subject><subject>Crack initiation</subject><subject>Crack propagation</subject><subject>Crack tips</subject><subject>Cracks</subject><subject>Ductile fracture</subject><subject>Ductile-brittle transition</subject><subject>Failure mechanisms</subject><subject>Finite element method</subject><subject>Fracture mechanics</subject><subject>Fracture toughness</subject><subject>Materials Science</subject><subject>Mathematical models</subject><subject>Mechanical Engineering</subject><subject>Original Paper</subject><subject>Softening</subject><subject>Temperature dependence</subject><subject>Transition temperature</subject><subject>Voids</subject><issn>0376-9429</issn><issn>1573-2673</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkc2KFDEUhYMo2I4-gLuAGzdx8leVxN0wOKMw4EbXIZW61Z0hnbRJSnFWLnwD39AnMT0tCIK4Olz4zrkcDkLPGX3FKFXnlVFFJaFMEGOYJPIB2rBBCcJHJR6iDRVqJEZy8xg9qfWWUmqUlhv0_QLv8wwxpC12h0PJzu_wkgtuO8A-7w8RGuB59S1E-Pntx1RCaxFwKy7V0EJOuMC2y-tO76CGz4DvcgIc0tE-heTuoS-h7bDDKScSs3cRX6-l9uP--VP0aHGxwrPfeoY-Xr35cPmW3Ly_fnd5cUO80LyRYenNlBnn0ajFGbHQmQ3jTB2TdBJaOg9ucE6LXpkxv-gB-CAnB4IZKvUkztDLU27v-WmF2uw-VA8xugR5rZaNShnNRsn_jw6yf5WjNB198Rd6m9eSehHL-WA0N0bTTrET5UuutcBiDyXsXflqGbXHCe1pQtsntMcJrewefvLUzqYtlD_J_zb9AgaCoDs</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Hütter, Geralf</creator><creator>Linse, Thomas</creator><creator>Roth, Stephan</creator><creator>Mühlich, Uwe</creator><creator>Kuna, Meinhard</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20140101</creationdate><title>A modeling approach for the complete ductile–brittle transition region: cohesive zone in combination with a non-local Gurson-model</title><author>Hütter, Geralf ; Linse, Thomas ; Roth, Stephan ; Mühlich, Uwe ; Kuna, Meinhard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-5f914796d697fa93f0d156d0a140b384acea5aa8367311cf85e254bae319048b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Automotive Engineering</topic><topic>Boundary value problems</topic><topic>Brittleness</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Civil Engineering</topic><topic>Classical Mechanics</topic><topic>Cleavage</topic><topic>Coalescing</topic><topic>Cohesion</topic><topic>Computer simulation</topic><topic>Crack arrest</topic><topic>Crack initiation</topic><topic>Crack propagation</topic><topic>Crack tips</topic><topic>Cracks</topic><topic>Ductile fracture</topic><topic>Ductile-brittle transition</topic><topic>Failure mechanisms</topic><topic>Finite element method</topic><topic>Fracture mechanics</topic><topic>Fracture toughness</topic><topic>Materials Science</topic><topic>Mathematical models</topic><topic>Mechanical Engineering</topic><topic>Original Paper</topic><topic>Softening</topic><topic>Temperature dependence</topic><topic>Transition temperature</topic><topic>Voids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hütter, Geralf</creatorcontrib><creatorcontrib>Linse, Thomas</creatorcontrib><creatorcontrib>Roth, Stephan</creatorcontrib><creatorcontrib>Mühlich, Uwe</creatorcontrib><creatorcontrib>Kuna, Meinhard</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>International journal of fracture</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hütter, Geralf</au><au>Linse, Thomas</au><au>Roth, Stephan</au><au>Mühlich, Uwe</au><au>Kuna, Meinhard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A modeling approach for the complete ductile–brittle transition region: cohesive zone in combination with a non-local Gurson-model</atitle><jtitle>International journal of fracture</jtitle><stitle>Int J Fract</stitle><date>2014-01-01</date><risdate>2014</risdate><volume>185</volume><issue>1-2</issue><spage>129</spage><epage>153</epage><pages>129-153</pages><issn>0376-9429</issn><eissn>1573-2673</eissn><abstract>The present study deals with the simulation of crack propagation in the ductile–brittle transition region on the macro-scale. In contrast to most studies in the literature, not only the ductile softening by void growth and coalescence is incorporated but also the particular material degradation by cleavage. A non-local Gurson-type model is employed together with a cohesive zone to simulate both failure mechanisms simultaneously. This consistent formulation of a boundary value problem allows arbitrary high mesh resolutions. The results show that the model captures qualitative effects of corresponding experiments such as the cleavage initiation in front of a stretch zone, the formation of secondary cracks and possible crack arrest. The influence of the temperature on the predicted toughness is reproduced in the whole ductile–brittle transition region without introducing temperature-dependent fit parameters. A comparison with experimental data shows that the shift of the ductile–brittle transition temperature associated with a lower crack-tip constraint can be predicted quantitatively.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10704-013-9914-4</doi><tpages>25</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0376-9429
ispartof International journal of fracture, 2014-01, Vol.185 (1-2), p.129-153
issn 0376-9429
1573-2673
language eng
recordid cdi_proquest_miscellaneous_1677981642
source SpringerLink Journals - AutoHoldings
subjects Automotive Engineering
Boundary value problems
Brittleness
Characterization and Evaluation of Materials
Chemistry and Materials Science
Civil Engineering
Classical Mechanics
Cleavage
Coalescing
Cohesion
Computer simulation
Crack arrest
Crack initiation
Crack propagation
Crack tips
Cracks
Ductile fracture
Ductile-brittle transition
Failure mechanisms
Finite element method
Fracture mechanics
Fracture toughness
Materials Science
Mathematical models
Mechanical Engineering
Original Paper
Softening
Temperature dependence
Transition temperature
Voids
title A modeling approach for the complete ductile–brittle transition region: cohesive zone in combination with a non-local Gurson-model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A48%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20modeling%20approach%20for%20the%20complete%20ductile%E2%80%93brittle%20transition%20region:%20cohesive%20zone%20in%20combination%20with%20a%20non-local%20Gurson-model&rft.jtitle=International%20journal%20of%20fracture&rft.au=H%C3%BCtter,%20Geralf&rft.date=2014-01-01&rft.volume=185&rft.issue=1-2&rft.spage=129&rft.epage=153&rft.pages=129-153&rft.issn=0376-9429&rft.eissn=1573-2673&rft_id=info:doi/10.1007/s10704-013-9914-4&rft_dat=%3Cproquest_cross%3E2259829980%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259829980&rft_id=info:pmid/&rfr_iscdi=true