A modeling approach for the complete ductile–brittle transition region: cohesive zone in combination with a non-local Gurson-model
The present study deals with the simulation of crack propagation in the ductile–brittle transition region on the macro-scale. In contrast to most studies in the literature, not only the ductile softening by void growth and coalescence is incorporated but also the particular material degradation by c...
Gespeichert in:
Veröffentlicht in: | International journal of fracture 2014-01, Vol.185 (1-2), p.129-153 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 153 |
---|---|
container_issue | 1-2 |
container_start_page | 129 |
container_title | International journal of fracture |
container_volume | 185 |
creator | Hütter, Geralf Linse, Thomas Roth, Stephan Mühlich, Uwe Kuna, Meinhard |
description | The present study deals with the simulation of crack propagation in the ductile–brittle transition region on the macro-scale. In contrast to most studies in the literature, not only the ductile softening by void growth and coalescence is incorporated but also the particular material degradation by cleavage. A non-local Gurson-type model is employed together with a cohesive zone to simulate both failure mechanisms simultaneously. This consistent formulation of a boundary value problem allows arbitrary high mesh resolutions. The results show that the model captures qualitative effects of corresponding experiments such as the cleavage initiation in front of a stretch zone, the formation of secondary cracks and possible crack arrest. The influence of the temperature on the predicted toughness is reproduced in the whole ductile–brittle transition region without introducing temperature-dependent fit parameters. A comparison with experimental data shows that the shift of the ductile–brittle transition temperature associated with a lower crack-tip constraint can be predicted quantitatively. |
doi_str_mv | 10.1007/s10704-013-9914-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677981642</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259829980</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-5f914796d697fa93f0d156d0a140b384acea5aa8367311cf85e254bae319048b3</originalsourceid><addsrcrecordid>eNqFkc2KFDEUhYMo2I4-gLuAGzdx8leVxN0wOKMw4EbXIZW61Z0hnbRJSnFWLnwD39AnMT0tCIK4Olz4zrkcDkLPGX3FKFXnlVFFJaFMEGOYJPIB2rBBCcJHJR6iDRVqJEZy8xg9qfWWUmqUlhv0_QLv8wwxpC12h0PJzu_wkgtuO8A-7w8RGuB59S1E-Pntx1RCaxFwKy7V0EJOuMC2y-tO76CGz4DvcgIc0tE-heTuoS-h7bDDKScSs3cRX6-l9uP--VP0aHGxwrPfeoY-Xr35cPmW3Ly_fnd5cUO80LyRYenNlBnn0ajFGbHQmQ3jTB2TdBJaOg9ucE6LXpkxv-gB-CAnB4IZKvUkztDLU27v-WmF2uw-VA8xugR5rZaNShnNRsn_jw6yf5WjNB198Rd6m9eSehHL-WA0N0bTTrET5UuutcBiDyXsXflqGbXHCe1pQtsntMcJrewefvLUzqYtlD_J_zb9AgaCoDs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259829980</pqid></control><display><type>article</type><title>A modeling approach for the complete ductile–brittle transition region: cohesive zone in combination with a non-local Gurson-model</title><source>SpringerLink Journals - AutoHoldings</source><creator>Hütter, Geralf ; Linse, Thomas ; Roth, Stephan ; Mühlich, Uwe ; Kuna, Meinhard</creator><creatorcontrib>Hütter, Geralf ; Linse, Thomas ; Roth, Stephan ; Mühlich, Uwe ; Kuna, Meinhard</creatorcontrib><description>The present study deals with the simulation of crack propagation in the ductile–brittle transition region on the macro-scale. In contrast to most studies in the literature, not only the ductile softening by void growth and coalescence is incorporated but also the particular material degradation by cleavage. A non-local Gurson-type model is employed together with a cohesive zone to simulate both failure mechanisms simultaneously. This consistent formulation of a boundary value problem allows arbitrary high mesh resolutions. The results show that the model captures qualitative effects of corresponding experiments such as the cleavage initiation in front of a stretch zone, the formation of secondary cracks and possible crack arrest. The influence of the temperature on the predicted toughness is reproduced in the whole ductile–brittle transition region without introducing temperature-dependent fit parameters. A comparison with experimental data shows that the shift of the ductile–brittle transition temperature associated with a lower crack-tip constraint can be predicted quantitatively.</description><identifier>ISSN: 0376-9429</identifier><identifier>EISSN: 1573-2673</identifier><identifier>DOI: 10.1007/s10704-013-9914-4</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Automotive Engineering ; Boundary value problems ; Brittleness ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Civil Engineering ; Classical Mechanics ; Cleavage ; Coalescing ; Cohesion ; Computer simulation ; Crack arrest ; Crack initiation ; Crack propagation ; Crack tips ; Cracks ; Ductile fracture ; Ductile-brittle transition ; Failure mechanisms ; Finite element method ; Fracture mechanics ; Fracture toughness ; Materials Science ; Mathematical models ; Mechanical Engineering ; Original Paper ; Softening ; Temperature dependence ; Transition temperature ; Voids</subject><ispartof>International journal of fracture, 2014-01, Vol.185 (1-2), p.129-153</ispartof><rights>Springer Science+Business Media Dordrecht 2013</rights><rights>International Journal of Fracture is a copyright of Springer, (2013). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-5f914796d697fa93f0d156d0a140b384acea5aa8367311cf85e254bae319048b3</citedby><cites>FETCH-LOGICAL-c382t-5f914796d697fa93f0d156d0a140b384acea5aa8367311cf85e254bae319048b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10704-013-9914-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10704-013-9914-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Hütter, Geralf</creatorcontrib><creatorcontrib>Linse, Thomas</creatorcontrib><creatorcontrib>Roth, Stephan</creatorcontrib><creatorcontrib>Mühlich, Uwe</creatorcontrib><creatorcontrib>Kuna, Meinhard</creatorcontrib><title>A modeling approach for the complete ductile–brittle transition region: cohesive zone in combination with a non-local Gurson-model</title><title>International journal of fracture</title><addtitle>Int J Fract</addtitle><description>The present study deals with the simulation of crack propagation in the ductile–brittle transition region on the macro-scale. In contrast to most studies in the literature, not only the ductile softening by void growth and coalescence is incorporated but also the particular material degradation by cleavage. A non-local Gurson-type model is employed together with a cohesive zone to simulate both failure mechanisms simultaneously. This consistent formulation of a boundary value problem allows arbitrary high mesh resolutions. The results show that the model captures qualitative effects of corresponding experiments such as the cleavage initiation in front of a stretch zone, the formation of secondary cracks and possible crack arrest. The influence of the temperature on the predicted toughness is reproduced in the whole ductile–brittle transition region without introducing temperature-dependent fit parameters. A comparison with experimental data shows that the shift of the ductile–brittle transition temperature associated with a lower crack-tip constraint can be predicted quantitatively.</description><subject>Automotive Engineering</subject><subject>Boundary value problems</subject><subject>Brittleness</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Civil Engineering</subject><subject>Classical Mechanics</subject><subject>Cleavage</subject><subject>Coalescing</subject><subject>Cohesion</subject><subject>Computer simulation</subject><subject>Crack arrest</subject><subject>Crack initiation</subject><subject>Crack propagation</subject><subject>Crack tips</subject><subject>Cracks</subject><subject>Ductile fracture</subject><subject>Ductile-brittle transition</subject><subject>Failure mechanisms</subject><subject>Finite element method</subject><subject>Fracture mechanics</subject><subject>Fracture toughness</subject><subject>Materials Science</subject><subject>Mathematical models</subject><subject>Mechanical Engineering</subject><subject>Original Paper</subject><subject>Softening</subject><subject>Temperature dependence</subject><subject>Transition temperature</subject><subject>Voids</subject><issn>0376-9429</issn><issn>1573-2673</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkc2KFDEUhYMo2I4-gLuAGzdx8leVxN0wOKMw4EbXIZW61Z0hnbRJSnFWLnwD39AnMT0tCIK4Olz4zrkcDkLPGX3FKFXnlVFFJaFMEGOYJPIB2rBBCcJHJR6iDRVqJEZy8xg9qfWWUmqUlhv0_QLv8wwxpC12h0PJzu_wkgtuO8A-7w8RGuB59S1E-Pntx1RCaxFwKy7V0EJOuMC2y-tO76CGz4DvcgIc0tE-heTuoS-h7bDDKScSs3cRX6-l9uP--VP0aHGxwrPfeoY-Xr35cPmW3Ly_fnd5cUO80LyRYenNlBnn0ajFGbHQmQ3jTB2TdBJaOg9ucE6LXpkxv-gB-CAnB4IZKvUkztDLU27v-WmF2uw-VA8xugR5rZaNShnNRsn_jw6yf5WjNB198Rd6m9eSehHL-WA0N0bTTrET5UuutcBiDyXsXflqGbXHCe1pQtsntMcJrewefvLUzqYtlD_J_zb9AgaCoDs</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Hütter, Geralf</creator><creator>Linse, Thomas</creator><creator>Roth, Stephan</creator><creator>Mühlich, Uwe</creator><creator>Kuna, Meinhard</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20140101</creationdate><title>A modeling approach for the complete ductile–brittle transition region: cohesive zone in combination with a non-local Gurson-model</title><author>Hütter, Geralf ; Linse, Thomas ; Roth, Stephan ; Mühlich, Uwe ; Kuna, Meinhard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-5f914796d697fa93f0d156d0a140b384acea5aa8367311cf85e254bae319048b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Automotive Engineering</topic><topic>Boundary value problems</topic><topic>Brittleness</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Civil Engineering</topic><topic>Classical Mechanics</topic><topic>Cleavage</topic><topic>Coalescing</topic><topic>Cohesion</topic><topic>Computer simulation</topic><topic>Crack arrest</topic><topic>Crack initiation</topic><topic>Crack propagation</topic><topic>Crack tips</topic><topic>Cracks</topic><topic>Ductile fracture</topic><topic>Ductile-brittle transition</topic><topic>Failure mechanisms</topic><topic>Finite element method</topic><topic>Fracture mechanics</topic><topic>Fracture toughness</topic><topic>Materials Science</topic><topic>Mathematical models</topic><topic>Mechanical Engineering</topic><topic>Original Paper</topic><topic>Softening</topic><topic>Temperature dependence</topic><topic>Transition temperature</topic><topic>Voids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hütter, Geralf</creatorcontrib><creatorcontrib>Linse, Thomas</creatorcontrib><creatorcontrib>Roth, Stephan</creatorcontrib><creatorcontrib>Mühlich, Uwe</creatorcontrib><creatorcontrib>Kuna, Meinhard</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>International journal of fracture</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hütter, Geralf</au><au>Linse, Thomas</au><au>Roth, Stephan</au><au>Mühlich, Uwe</au><au>Kuna, Meinhard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A modeling approach for the complete ductile–brittle transition region: cohesive zone in combination with a non-local Gurson-model</atitle><jtitle>International journal of fracture</jtitle><stitle>Int J Fract</stitle><date>2014-01-01</date><risdate>2014</risdate><volume>185</volume><issue>1-2</issue><spage>129</spage><epage>153</epage><pages>129-153</pages><issn>0376-9429</issn><eissn>1573-2673</eissn><abstract>The present study deals with the simulation of crack propagation in the ductile–brittle transition region on the macro-scale. In contrast to most studies in the literature, not only the ductile softening by void growth and coalescence is incorporated but also the particular material degradation by cleavage. A non-local Gurson-type model is employed together with a cohesive zone to simulate both failure mechanisms simultaneously. This consistent formulation of a boundary value problem allows arbitrary high mesh resolutions. The results show that the model captures qualitative effects of corresponding experiments such as the cleavage initiation in front of a stretch zone, the formation of secondary cracks and possible crack arrest. The influence of the temperature on the predicted toughness is reproduced in the whole ductile–brittle transition region without introducing temperature-dependent fit parameters. A comparison with experimental data shows that the shift of the ductile–brittle transition temperature associated with a lower crack-tip constraint can be predicted quantitatively.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10704-013-9914-4</doi><tpages>25</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0376-9429 |
ispartof | International journal of fracture, 2014-01, Vol.185 (1-2), p.129-153 |
issn | 0376-9429 1573-2673 |
language | eng |
recordid | cdi_proquest_miscellaneous_1677981642 |
source | SpringerLink Journals - AutoHoldings |
subjects | Automotive Engineering Boundary value problems Brittleness Characterization and Evaluation of Materials Chemistry and Materials Science Civil Engineering Classical Mechanics Cleavage Coalescing Cohesion Computer simulation Crack arrest Crack initiation Crack propagation Crack tips Cracks Ductile fracture Ductile-brittle transition Failure mechanisms Finite element method Fracture mechanics Fracture toughness Materials Science Mathematical models Mechanical Engineering Original Paper Softening Temperature dependence Transition temperature Voids |
title | A modeling approach for the complete ductile–brittle transition region: cohesive zone in combination with a non-local Gurson-model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A48%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20modeling%20approach%20for%20the%20complete%20ductile%E2%80%93brittle%20transition%20region:%20cohesive%20zone%20in%20combination%20with%20a%20non-local%20Gurson-model&rft.jtitle=International%20journal%20of%20fracture&rft.au=H%C3%BCtter,%20Geralf&rft.date=2014-01-01&rft.volume=185&rft.issue=1-2&rft.spage=129&rft.epage=153&rft.pages=129-153&rft.issn=0376-9429&rft.eissn=1573-2673&rft_id=info:doi/10.1007/s10704-013-9914-4&rft_dat=%3Cproquest_cross%3E2259829980%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259829980&rft_id=info:pmid/&rfr_iscdi=true |