Low Cycle Fatigue Behavior and Deformation Mechanism of TWIP Steel
Low cycle fatigue behavior of TWIP (twinning induced plasticity) steel was investigated in axial symmetric tension-compression cyclic loading pattern. Fracture surfaces and microstructures were examined by optical, scanning electron and transmission electron microscopes. It was found that the fatigu...
Gespeichert in:
Veröffentlicht in: | Journal of iron and steel research, international international, 2014-03, Vol.21 (3), p.352-358 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 358 |
---|---|
container_issue | 3 |
container_start_page | 352 |
container_title | Journal of iron and steel research, international |
container_volume | 21 |
creator | WU, Yan-xin TANG, Di JIANG, Hai-tao MI, Zhen-li XUE, Yao WU, Hai-peng |
description | Low cycle fatigue behavior of TWIP (twinning induced plasticity) steel was investigated in axial symmetric tension-compression cyclic loading pattern. Fracture surfaces and microstructures were examined by optical, scanning electron and transmission electron microscopes. It was found that the fatigue life at the strain amplitude of 0.4% is up to 15000 cycles, which is much longer than TRIP780 and HSLA800 steels. The strain hardening and softening features are significant until the strain amplitude comes to 1.25%. Persistent slip bands and tiny mechanical twinning layers were observed after fatigue deformation. Deformation mechanism of TWIP steel at low cycle fatigue process is not only twinning, but a complex of both twinning and persistent slip bands. |
doi_str_mv | 10.1016/S1006-706X(14)60054-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677980746</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>49386865</cqvip_id><els_id>S1006706X14600546</els_id><sourcerecordid>1567056067</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-41b2c3ecfb429da7a4195403dc1b18b79cfa915f2c3ee3d985f76b8a96a4d2ac3</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EEhX0E5DMriwCduL4sUJQnlIRSAXBznKcSesqjcFOQfw9SYu67WxmMefOjA5CJ5ScU0L5xZQSwhNB-MeIsjNOSM4SvocGaUpJkikp99FgixyiYYwL0pfiWSoH6Hrif_D419aA70zrZivA1zA3384HbJoS30Dlw7Kb-AY_gZ2bxsUl9hV-fX98wdMWoD5GB5WpIwz_-xF6u7t9HT8kk-f7x_HVJLGMyTZhtEhtBrYqWKpKIwyjKmckKy0tqCyEspVRNK96CLJSybwSvJBGccPK1NjsCI02ez-D_1pBbPXSRQt1bRrwq6gpF0JJIhjfjeZckJwTLjo036A2-BgDVPozuKUJv5oS3RvWa8O616cp02vDuj_BN7nY8c0Mgl74VWg6ATuDl5sgdK6-XReM1kFjoXQBbKtL73ZuOP1_ee6b2Vd3ffszU5nkkufZHwvTnTk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1567056067</pqid></control><display><type>article</type><title>Low Cycle Fatigue Behavior and Deformation Mechanism of TWIP Steel</title><source>Springer Nature - Complete Springer Journals</source><source>Elsevier ScienceDirect Journals</source><source>Alma/SFX Local Collection</source><creator>WU, Yan-xin ; TANG, Di ; JIANG, Hai-tao ; MI, Zhen-li ; XUE, Yao ; WU, Hai-peng</creator><creatorcontrib>WU, Yan-xin ; TANG, Di ; JIANG, Hai-tao ; MI, Zhen-li ; XUE, Yao ; WU, Hai-peng</creatorcontrib><description>Low cycle fatigue behavior of TWIP (twinning induced plasticity) steel was investigated in axial symmetric tension-compression cyclic loading pattern. Fracture surfaces and microstructures were examined by optical, scanning electron and transmission electron microscopes. It was found that the fatigue life at the strain amplitude of 0.4% is up to 15000 cycles, which is much longer than TRIP780 and HSLA800 steels. The strain hardening and softening features are significant until the strain amplitude comes to 1.25%. Persistent slip bands and tiny mechanical twinning layers were observed after fatigue deformation. Deformation mechanism of TWIP steel at low cycle fatigue process is not only twinning, but a complex of both twinning and persistent slip bands.</description><identifier>ISSN: 1006-706X</identifier><identifier>EISSN: 2210-3988</identifier><identifier>DOI: 10.1016/S1006-706X(14)60054-6</identifier><language>eng</language><publisher>Singapore: Elsevier Ltd</publisher><subject>Amplitudes ; Applied and Technical Physics ; Engineering ; Fatigue (materials) ; fatigue property ; High strength steels ; Iron and steel industry ; Low cycle fatigue ; Machines ; Manufacturing ; Materials Engineering ; Materials Science ; Metallic Materials ; persistent slip band ; Physical Chemistry ; Processes ; Scanning electron microscopy ; Slip bands ; Steels ; Twinning ; TWIP steel ; 低周疲劳性能 ; 加载模式 ; 变形机制 ; 应变硬化 ; 疲劳行为 ; 透射电子显微镜 ; 钢 ; 驻留滑移带</subject><ispartof>Journal of iron and steel research, international, 2014-03, Vol.21 (3), p.352-358</ispartof><rights>2014 Central Iron and Steel Research Institute</rights><rights>China Iron and Steel Research Institute Group 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-41b2c3ecfb429da7a4195403dc1b18b79cfa915f2c3ee3d985f76b8a96a4d2ac3</citedby><cites>FETCH-LOGICAL-c448t-41b2c3ecfb429da7a4195403dc1b18b79cfa915f2c3ee3d985f76b8a96a4d2ac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/86787X/86787X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1016/S1006-706X(14)60054-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1006706X14600546$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,41467,42536,51297,65309</link.rule.ids></links><search><creatorcontrib>WU, Yan-xin</creatorcontrib><creatorcontrib>TANG, Di</creatorcontrib><creatorcontrib>JIANG, Hai-tao</creatorcontrib><creatorcontrib>MI, Zhen-li</creatorcontrib><creatorcontrib>XUE, Yao</creatorcontrib><creatorcontrib>WU, Hai-peng</creatorcontrib><title>Low Cycle Fatigue Behavior and Deformation Mechanism of TWIP Steel</title><title>Journal of iron and steel research, international</title><addtitle>J. Iron Steel Res. Int</addtitle><addtitle>Journal of Iron and Steel Research</addtitle><description>Low cycle fatigue behavior of TWIP (twinning induced plasticity) steel was investigated in axial symmetric tension-compression cyclic loading pattern. Fracture surfaces and microstructures were examined by optical, scanning electron and transmission electron microscopes. It was found that the fatigue life at the strain amplitude of 0.4% is up to 15000 cycles, which is much longer than TRIP780 and HSLA800 steels. The strain hardening and softening features are significant until the strain amplitude comes to 1.25%. Persistent slip bands and tiny mechanical twinning layers were observed after fatigue deformation. Deformation mechanism of TWIP steel at low cycle fatigue process is not only twinning, but a complex of both twinning and persistent slip bands.</description><subject>Amplitudes</subject><subject>Applied and Technical Physics</subject><subject>Engineering</subject><subject>Fatigue (materials)</subject><subject>fatigue property</subject><subject>High strength steels</subject><subject>Iron and steel industry</subject><subject>Low cycle fatigue</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Materials Engineering</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>persistent slip band</subject><subject>Physical Chemistry</subject><subject>Processes</subject><subject>Scanning electron microscopy</subject><subject>Slip bands</subject><subject>Steels</subject><subject>Twinning</subject><subject>TWIP steel</subject><subject>低周疲劳性能</subject><subject>加载模式</subject><subject>变形机制</subject><subject>应变硬化</subject><subject>疲劳行为</subject><subject>透射电子显微镜</subject><subject>钢</subject><subject>驻留滑移带</subject><issn>1006-706X</issn><issn>2210-3988</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EEhX0E5DMriwCduL4sUJQnlIRSAXBznKcSesqjcFOQfw9SYu67WxmMefOjA5CJ5ScU0L5xZQSwhNB-MeIsjNOSM4SvocGaUpJkikp99FgixyiYYwL0pfiWSoH6Hrif_D419aA70zrZivA1zA3384HbJoS30Dlw7Kb-AY_gZ2bxsUl9hV-fX98wdMWoD5GB5WpIwz_-xF6u7t9HT8kk-f7x_HVJLGMyTZhtEhtBrYqWKpKIwyjKmckKy0tqCyEspVRNK96CLJSybwSvJBGccPK1NjsCI02ez-D_1pBbPXSRQt1bRrwq6gpF0JJIhjfjeZckJwTLjo036A2-BgDVPozuKUJv5oS3RvWa8O616cp02vDuj_BN7nY8c0Mgl74VWg6ATuDl5sgdK6-XReM1kFjoXQBbKtL73ZuOP1_ee6b2Vd3ffszU5nkkufZHwvTnTk</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>WU, Yan-xin</creator><creator>TANG, Di</creator><creator>JIANG, Hai-tao</creator><creator>MI, Zhen-li</creator><creator>XUE, Yao</creator><creator>WU, Hai-peng</creator><general>Elsevier Ltd</general><general>Springer Singapore</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20140301</creationdate><title>Low Cycle Fatigue Behavior and Deformation Mechanism of TWIP Steel</title><author>WU, Yan-xin ; TANG, Di ; JIANG, Hai-tao ; MI, Zhen-li ; XUE, Yao ; WU, Hai-peng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-41b2c3ecfb429da7a4195403dc1b18b79cfa915f2c3ee3d985f76b8a96a4d2ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Amplitudes</topic><topic>Applied and Technical Physics</topic><topic>Engineering</topic><topic>Fatigue (materials)</topic><topic>fatigue property</topic><topic>High strength steels</topic><topic>Iron and steel industry</topic><topic>Low cycle fatigue</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Materials Engineering</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>persistent slip band</topic><topic>Physical Chemistry</topic><topic>Processes</topic><topic>Scanning electron microscopy</topic><topic>Slip bands</topic><topic>Steels</topic><topic>Twinning</topic><topic>TWIP steel</topic><topic>低周疲劳性能</topic><topic>加载模式</topic><topic>变形机制</topic><topic>应变硬化</topic><topic>疲劳行为</topic><topic>透射电子显微镜</topic><topic>钢</topic><topic>驻留滑移带</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>WU, Yan-xin</creatorcontrib><creatorcontrib>TANG, Di</creatorcontrib><creatorcontrib>JIANG, Hai-tao</creatorcontrib><creatorcontrib>MI, Zhen-li</creatorcontrib><creatorcontrib>XUE, Yao</creatorcontrib><creatorcontrib>WU, Hai-peng</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of iron and steel research, international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>WU, Yan-xin</au><au>TANG, Di</au><au>JIANG, Hai-tao</au><au>MI, Zhen-li</au><au>XUE, Yao</au><au>WU, Hai-peng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low Cycle Fatigue Behavior and Deformation Mechanism of TWIP Steel</atitle><jtitle>Journal of iron and steel research, international</jtitle><stitle>J. Iron Steel Res. Int</stitle><addtitle>Journal of Iron and Steel Research</addtitle><date>2014-03-01</date><risdate>2014</risdate><volume>21</volume><issue>3</issue><spage>352</spage><epage>358</epage><pages>352-358</pages><issn>1006-706X</issn><eissn>2210-3988</eissn><abstract>Low cycle fatigue behavior of TWIP (twinning induced plasticity) steel was investigated in axial symmetric tension-compression cyclic loading pattern. Fracture surfaces and microstructures were examined by optical, scanning electron and transmission electron microscopes. It was found that the fatigue life at the strain amplitude of 0.4% is up to 15000 cycles, which is much longer than TRIP780 and HSLA800 steels. The strain hardening and softening features are significant until the strain amplitude comes to 1.25%. Persistent slip bands and tiny mechanical twinning layers were observed after fatigue deformation. Deformation mechanism of TWIP steel at low cycle fatigue process is not only twinning, but a complex of both twinning and persistent slip bands.</abstract><cop>Singapore</cop><pub>Elsevier Ltd</pub><doi>10.1016/S1006-706X(14)60054-6</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1006-706X |
ispartof | Journal of iron and steel research, international, 2014-03, Vol.21 (3), p.352-358 |
issn | 1006-706X 2210-3988 |
language | eng |
recordid | cdi_proquest_miscellaneous_1677980746 |
source | Springer Nature - Complete Springer Journals; Elsevier ScienceDirect Journals; Alma/SFX Local Collection |
subjects | Amplitudes Applied and Technical Physics Engineering Fatigue (materials) fatigue property High strength steels Iron and steel industry Low cycle fatigue Machines Manufacturing Materials Engineering Materials Science Metallic Materials persistent slip band Physical Chemistry Processes Scanning electron microscopy Slip bands Steels Twinning TWIP steel 低周疲劳性能 加载模式 变形机制 应变硬化 疲劳行为 透射电子显微镜 钢 驻留滑移带 |
title | Low Cycle Fatigue Behavior and Deformation Mechanism of TWIP Steel |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T17%3A05%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low%20Cycle%20Fatigue%20Behavior%20and%20Deformation%20Mechanism%20of%20TWIP%20Steel&rft.jtitle=Journal%20of%20iron%20and%20steel%20research,%20international&rft.au=WU,%20Yan-xin&rft.date=2014-03-01&rft.volume=21&rft.issue=3&rft.spage=352&rft.epage=358&rft.pages=352-358&rft.issn=1006-706X&rft.eissn=2210-3988&rft_id=info:doi/10.1016/S1006-706X(14)60054-6&rft_dat=%3Cproquest_cross%3E1567056067%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1567056067&rft_id=info:pmid/&rft_cqvip_id=49386865&rft_els_id=S1006706X14600546&rfr_iscdi=true |