Characterization of a CZTS thin film solar cell grown by sputtering method

•6.2% CZTS/CdS solar cell without AR coating.•QE modeling shows less than half the thickness of the CZTS layer contributes to photocurrent.•Detailed characterization of the CZTS cell properties. We report the performance of Cu2ZnSnS4 (CZTS) thin film solar cell that showed efficiency in the range of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Solar energy 2014-02, Vol.100, p.23-30
Hauptverfasser: Dhakal, Tara P., Peng, Chien–Yi, Reid Tobias, R., Dasharathy, Ramesh, Westgate, Charles R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 30
container_issue
container_start_page 23
container_title Solar energy
container_volume 100
creator Dhakal, Tara P.
Peng, Chien–Yi
Reid Tobias, R.
Dasharathy, Ramesh
Westgate, Charles R.
description •6.2% CZTS/CdS solar cell without AR coating.•QE modeling shows less than half the thickness of the CZTS layer contributes to photocurrent.•Detailed characterization of the CZTS cell properties. We report the performance of Cu2ZnSnS4 (CZTS) thin film solar cell that showed efficiency in the range of 6.2% without an anti-reflection coating. Initially, the CZTS precursor film was co-sputtered using three different targets; copper (Cu), tin sulfide (SnS) and zinc sulfide (ZnS). The Cu target was subjected to DC power, and RF power was used for the SnS and ZnS targets. The as-grown CZTS film was sulfurized in a H2S/N2 environment at 525°C, which re-crystalized the film with grain sizes in the range of 1μm. Cadmium sulfide (CdS) was used as the n-type layer. Current–voltage (I–V), quantum efficiency (QE) and capacitance–voltage (C–V) measurements were used to characterize the cell device. The modeling and analysis of QE and CV data showed that a significant portion of the CZTS layer did not contribute to the photo-generation. Optimizing CZTS phase purity, improving QE in the broader wavelength region, and increasing minority carrier lifetime are necessary steps to further improve CZTS device performance.
doi_str_mv 10.1016/j.solener.2013.11.035
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677978258</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0038092X13005161</els_id><sourcerecordid>3186540701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c532t-384205b186da07570b592ac5fef5b80f177df5b5b1403530cb6db02dd805213b3</originalsourceid><addsrcrecordid>eNqNkU-LFDEQxYMoOM76EYSACF66rUo6nfRJZFj_sbAHVxAvIZ1O72ToScakR9n99KaZwYOX3VPV4Vev6tUj5BVCjYDtu12d4-SCSzUD5DViDVw8IStsJFbIhHxKVgBcVdCxH8_Ji5x3AChRyRX5utmaZOzskr83s4-BxpEauvl5843OWx_o6Kc9LfomUeumid6m-CfQ_o7mw3FexsIt3bt5G4cL8mw0U3Yvz3VNvn-8vNl8rq6uP33ZfLiqrOBsrrhqGIgeVTsYkEJCLzpmrBjdKHoFI0o5lK4QTbHBwfbt0AMbBgWCIe_5mrw96R5S_HV0edZ7n5fbTHDxmDW2UnZSMaEeRkUDjDUc2kegDLgs_xYFff0fuovHFIpnjU0HrRTYNoUSJ8qmmHNyoz4kvzfpTiPoJTe90-fc9JKbRtSL4TV5c1Y32ZppTCZYn_8NM4Wsld3CvT9xrvz6ty8q2XoXrBt8cnbWQ_QPbPoL3mWt6g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1490675164</pqid></control><display><type>article</type><title>Characterization of a CZTS thin film solar cell grown by sputtering method</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Dhakal, Tara P. ; Peng, Chien–Yi ; Reid Tobias, R. ; Dasharathy, Ramesh ; Westgate, Charles R.</creator><creatorcontrib>Dhakal, Tara P. ; Peng, Chien–Yi ; Reid Tobias, R. ; Dasharathy, Ramesh ; Westgate, Charles R.</creatorcontrib><description>•6.2% CZTS/CdS solar cell without AR coating.•QE modeling shows less than half the thickness of the CZTS layer contributes to photocurrent.•Detailed characterization of the CZTS cell properties. We report the performance of Cu2ZnSnS4 (CZTS) thin film solar cell that showed efficiency in the range of 6.2% without an anti-reflection coating. Initially, the CZTS precursor film was co-sputtered using three different targets; copper (Cu), tin sulfide (SnS) and zinc sulfide (ZnS). The Cu target was subjected to DC power, and RF power was used for the SnS and ZnS targets. The as-grown CZTS film was sulfurized in a H2S/N2 environment at 525°C, which re-crystalized the film with grain sizes in the range of 1μm. Cadmium sulfide (CdS) was used as the n-type layer. Current–voltage (I–V), quantum efficiency (QE) and capacitance–voltage (C–V) measurements were used to characterize the cell device. The modeling and analysis of QE and CV data showed that a significant portion of the CZTS layer did not contribute to the photo-generation. Optimizing CZTS phase purity, improving QE in the broader wavelength region, and increasing minority carrier lifetime are necessary steps to further improve CZTS device performance.</description><identifier>ISSN: 0038-092X</identifier><identifier>EISSN: 1471-1257</identifier><identifier>DOI: 10.1016/j.solener.2013.11.035</identifier><identifier>CODEN: SRENA4</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Cadmium ; CAPACITANCE ; Co-sputtering ; Copper ; COPPER SULFIDE ; Cu2ZnSnS4 ; CZT ; Devices ; Direct energy conversion and energy accumulation ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; ELECTRONIC PRODUCTS ; Energy ; Exact sciences and technology ; I–V/QE characteristics ; Natural energy ; Photoelectric conversion ; Photovoltaic cells ; Photovoltaic conversion ; Solar cells ; Solar cells. Photoelectrochemical cells ; Solar energy ; Solar power generation ; SPUTTERING ; SULFIDES ; Thin film solar cells ; THIN FILMS ; Tin ; ZINC SULFIDE ; Zinc sulfides</subject><ispartof>Solar energy, 2014-02, Vol.100, p.23-30</ispartof><rights>2013 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Pergamon Press Inc. Feb 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c532t-384205b186da07570b592ac5fef5b80f177df5b5b1403530cb6db02dd805213b3</citedby><cites>FETCH-LOGICAL-c532t-384205b186da07570b592ac5fef5b80f177df5b5b1403530cb6db02dd805213b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0038092X13005161$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28126795$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Dhakal, Tara P.</creatorcontrib><creatorcontrib>Peng, Chien–Yi</creatorcontrib><creatorcontrib>Reid Tobias, R.</creatorcontrib><creatorcontrib>Dasharathy, Ramesh</creatorcontrib><creatorcontrib>Westgate, Charles R.</creatorcontrib><title>Characterization of a CZTS thin film solar cell grown by sputtering method</title><title>Solar energy</title><description>•6.2% CZTS/CdS solar cell without AR coating.•QE modeling shows less than half the thickness of the CZTS layer contributes to photocurrent.•Detailed characterization of the CZTS cell properties. We report the performance of Cu2ZnSnS4 (CZTS) thin film solar cell that showed efficiency in the range of 6.2% without an anti-reflection coating. Initially, the CZTS precursor film was co-sputtered using three different targets; copper (Cu), tin sulfide (SnS) and zinc sulfide (ZnS). The Cu target was subjected to DC power, and RF power was used for the SnS and ZnS targets. The as-grown CZTS film was sulfurized in a H2S/N2 environment at 525°C, which re-crystalized the film with grain sizes in the range of 1μm. Cadmium sulfide (CdS) was used as the n-type layer. Current–voltage (I–V), quantum efficiency (QE) and capacitance–voltage (C–V) measurements were used to characterize the cell device. The modeling and analysis of QE and CV data showed that a significant portion of the CZTS layer did not contribute to the photo-generation. Optimizing CZTS phase purity, improving QE in the broader wavelength region, and increasing minority carrier lifetime are necessary steps to further improve CZTS device performance.</description><subject>Applied sciences</subject><subject>Cadmium</subject><subject>CAPACITANCE</subject><subject>Co-sputtering</subject><subject>Copper</subject><subject>COPPER SULFIDE</subject><subject>Cu2ZnSnS4</subject><subject>CZT</subject><subject>Devices</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>ELECTRONIC PRODUCTS</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>I–V/QE characteristics</subject><subject>Natural energy</subject><subject>Photoelectric conversion</subject><subject>Photovoltaic cells</subject><subject>Photovoltaic conversion</subject><subject>Solar cells</subject><subject>Solar cells. Photoelectrochemical cells</subject><subject>Solar energy</subject><subject>Solar power generation</subject><subject>SPUTTERING</subject><subject>SULFIDES</subject><subject>Thin film solar cells</subject><subject>THIN FILMS</subject><subject>Tin</subject><subject>ZINC SULFIDE</subject><subject>Zinc sulfides</subject><issn>0038-092X</issn><issn>1471-1257</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkU-LFDEQxYMoOM76EYSACF66rUo6nfRJZFj_sbAHVxAvIZ1O72ToScakR9n99KaZwYOX3VPV4Vev6tUj5BVCjYDtu12d4-SCSzUD5DViDVw8IStsJFbIhHxKVgBcVdCxH8_Ji5x3AChRyRX5utmaZOzskr83s4-BxpEauvl5843OWx_o6Kc9LfomUeumid6m-CfQ_o7mw3FexsIt3bt5G4cL8mw0U3Yvz3VNvn-8vNl8rq6uP33ZfLiqrOBsrrhqGIgeVTsYkEJCLzpmrBjdKHoFI0o5lK4QTbHBwfbt0AMbBgWCIe_5mrw96R5S_HV0edZ7n5fbTHDxmDW2UnZSMaEeRkUDjDUc2kegDLgs_xYFff0fuovHFIpnjU0HrRTYNoUSJ8qmmHNyoz4kvzfpTiPoJTe90-fc9JKbRtSL4TV5c1Y32ZppTCZYn_8NM4Wsld3CvT9xrvz6ty8q2XoXrBt8cnbWQ_QPbPoL3mWt6g</recordid><startdate>20140201</startdate><enddate>20140201</enddate><creator>Dhakal, Tara P.</creator><creator>Peng, Chien–Yi</creator><creator>Reid Tobias, R.</creator><creator>Dasharathy, Ramesh</creator><creator>Westgate, Charles R.</creator><general>Elsevier Ltd</general><general>Elsevier</general><general>Pergamon Press Inc</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><scope>7TG</scope><scope>KL.</scope><scope>7U5</scope><scope>H8G</scope><scope>JG9</scope></search><sort><creationdate>20140201</creationdate><title>Characterization of a CZTS thin film solar cell grown by sputtering method</title><author>Dhakal, Tara P. ; Peng, Chien–Yi ; Reid Tobias, R. ; Dasharathy, Ramesh ; Westgate, Charles R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c532t-384205b186da07570b592ac5fef5b80f177df5b5b1403530cb6db02dd805213b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Cadmium</topic><topic>CAPACITANCE</topic><topic>Co-sputtering</topic><topic>Copper</topic><topic>COPPER SULFIDE</topic><topic>Cu2ZnSnS4</topic><topic>CZT</topic><topic>Devices</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>ELECTRONIC PRODUCTS</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>I–V/QE characteristics</topic><topic>Natural energy</topic><topic>Photoelectric conversion</topic><topic>Photovoltaic cells</topic><topic>Photovoltaic conversion</topic><topic>Solar cells</topic><topic>Solar cells. Photoelectrochemical cells</topic><topic>Solar energy</topic><topic>Solar power generation</topic><topic>SPUTTERING</topic><topic>SULFIDES</topic><topic>Thin film solar cells</topic><topic>THIN FILMS</topic><topic>Tin</topic><topic>ZINC SULFIDE</topic><topic>Zinc sulfides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dhakal, Tara P.</creatorcontrib><creatorcontrib>Peng, Chien–Yi</creatorcontrib><creatorcontrib>Reid Tobias, R.</creatorcontrib><creatorcontrib>Dasharathy, Ramesh</creatorcontrib><creatorcontrib>Westgate, Charles R.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><jtitle>Solar energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dhakal, Tara P.</au><au>Peng, Chien–Yi</au><au>Reid Tobias, R.</au><au>Dasharathy, Ramesh</au><au>Westgate, Charles R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of a CZTS thin film solar cell grown by sputtering method</atitle><jtitle>Solar energy</jtitle><date>2014-02-01</date><risdate>2014</risdate><volume>100</volume><spage>23</spage><epage>30</epage><pages>23-30</pages><issn>0038-092X</issn><eissn>1471-1257</eissn><coden>SRENA4</coden><abstract>•6.2% CZTS/CdS solar cell without AR coating.•QE modeling shows less than half the thickness of the CZTS layer contributes to photocurrent.•Detailed characterization of the CZTS cell properties. We report the performance of Cu2ZnSnS4 (CZTS) thin film solar cell that showed efficiency in the range of 6.2% without an anti-reflection coating. Initially, the CZTS precursor film was co-sputtered using three different targets; copper (Cu), tin sulfide (SnS) and zinc sulfide (ZnS). The Cu target was subjected to DC power, and RF power was used for the SnS and ZnS targets. The as-grown CZTS film was sulfurized in a H2S/N2 environment at 525°C, which re-crystalized the film with grain sizes in the range of 1μm. Cadmium sulfide (CdS) was used as the n-type layer. Current–voltage (I–V), quantum efficiency (QE) and capacitance–voltage (C–V) measurements were used to characterize the cell device. The modeling and analysis of QE and CV data showed that a significant portion of the CZTS layer did not contribute to the photo-generation. Optimizing CZTS phase purity, improving QE in the broader wavelength region, and increasing minority carrier lifetime are necessary steps to further improve CZTS device performance.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.solener.2013.11.035</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0038-092X
ispartof Solar energy, 2014-02, Vol.100, p.23-30
issn 0038-092X
1471-1257
language eng
recordid cdi_proquest_miscellaneous_1677978258
source Elsevier ScienceDirect Journals Complete
subjects Applied sciences
Cadmium
CAPACITANCE
Co-sputtering
Copper
COPPER SULFIDE
Cu2ZnSnS4
CZT
Devices
Direct energy conversion and energy accumulation
Electrical engineering. Electrical power engineering
Electrical power engineering
ELECTRONIC PRODUCTS
Energy
Exact sciences and technology
I–V/QE characteristics
Natural energy
Photoelectric conversion
Photovoltaic cells
Photovoltaic conversion
Solar cells
Solar cells. Photoelectrochemical cells
Solar energy
Solar power generation
SPUTTERING
SULFIDES
Thin film solar cells
THIN FILMS
Tin
ZINC SULFIDE
Zinc sulfides
title Characterization of a CZTS thin film solar cell grown by sputtering method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T22%3A44%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20a%20CZTS%20thin%20film%20solar%20cell%20grown%20by%20sputtering%20method&rft.jtitle=Solar%20energy&rft.au=Dhakal,%20Tara%20P.&rft.date=2014-02-01&rft.volume=100&rft.spage=23&rft.epage=30&rft.pages=23-30&rft.issn=0038-092X&rft.eissn=1471-1257&rft.coden=SRENA4&rft_id=info:doi/10.1016/j.solener.2013.11.035&rft_dat=%3Cproquest_cross%3E3186540701%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1490675164&rft_id=info:pmid/&rft_els_id=S0038092X13005161&rfr_iscdi=true