Characterization of a CZTS thin film solar cell grown by sputtering method
•6.2% CZTS/CdS solar cell without AR coating.•QE modeling shows less than half the thickness of the CZTS layer contributes to photocurrent.•Detailed characterization of the CZTS cell properties. We report the performance of Cu2ZnSnS4 (CZTS) thin film solar cell that showed efficiency in the range of...
Gespeichert in:
Veröffentlicht in: | Solar energy 2014-02, Vol.100, p.23-30 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 30 |
---|---|
container_issue | |
container_start_page | 23 |
container_title | Solar energy |
container_volume | 100 |
creator | Dhakal, Tara P. Peng, Chien–Yi Reid Tobias, R. Dasharathy, Ramesh Westgate, Charles R. |
description | •6.2% CZTS/CdS solar cell without AR coating.•QE modeling shows less than half the thickness of the CZTS layer contributes to photocurrent.•Detailed characterization of the CZTS cell properties.
We report the performance of Cu2ZnSnS4 (CZTS) thin film solar cell that showed efficiency in the range of 6.2% without an anti-reflection coating. Initially, the CZTS precursor film was co-sputtered using three different targets; copper (Cu), tin sulfide (SnS) and zinc sulfide (ZnS). The Cu target was subjected to DC power, and RF power was used for the SnS and ZnS targets. The as-grown CZTS film was sulfurized in a H2S/N2 environment at 525°C, which re-crystalized the film with grain sizes in the range of 1μm. Cadmium sulfide (CdS) was used as the n-type layer. Current–voltage (I–V), quantum efficiency (QE) and capacitance–voltage (C–V) measurements were used to characterize the cell device. The modeling and analysis of QE and CV data showed that a significant portion of the CZTS layer did not contribute to the photo-generation. Optimizing CZTS phase purity, improving QE in the broader wavelength region, and increasing minority carrier lifetime are necessary steps to further improve CZTS device performance. |
doi_str_mv | 10.1016/j.solener.2013.11.035 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677978258</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0038092X13005161</els_id><sourcerecordid>3186540701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c532t-384205b186da07570b592ac5fef5b80f177df5b5b1403530cb6db02dd805213b3</originalsourceid><addsrcrecordid>eNqNkU-LFDEQxYMoOM76EYSACF66rUo6nfRJZFj_sbAHVxAvIZ1O72ToScakR9n99KaZwYOX3VPV4Vev6tUj5BVCjYDtu12d4-SCSzUD5DViDVw8IStsJFbIhHxKVgBcVdCxH8_Ji5x3AChRyRX5utmaZOzskr83s4-BxpEauvl5843OWx_o6Kc9LfomUeumid6m-CfQ_o7mw3FexsIt3bt5G4cL8mw0U3Yvz3VNvn-8vNl8rq6uP33ZfLiqrOBsrrhqGIgeVTsYkEJCLzpmrBjdKHoFI0o5lK4QTbHBwfbt0AMbBgWCIe_5mrw96R5S_HV0edZ7n5fbTHDxmDW2UnZSMaEeRkUDjDUc2kegDLgs_xYFff0fuovHFIpnjU0HrRTYNoUSJ8qmmHNyoz4kvzfpTiPoJTe90-fc9JKbRtSL4TV5c1Y32ZppTCZYn_8NM4Wsld3CvT9xrvz6ty8q2XoXrBt8cnbWQ_QPbPoL3mWt6g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1490675164</pqid></control><display><type>article</type><title>Characterization of a CZTS thin film solar cell grown by sputtering method</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Dhakal, Tara P. ; Peng, Chien–Yi ; Reid Tobias, R. ; Dasharathy, Ramesh ; Westgate, Charles R.</creator><creatorcontrib>Dhakal, Tara P. ; Peng, Chien–Yi ; Reid Tobias, R. ; Dasharathy, Ramesh ; Westgate, Charles R.</creatorcontrib><description>•6.2% CZTS/CdS solar cell without AR coating.•QE modeling shows less than half the thickness of the CZTS layer contributes to photocurrent.•Detailed characterization of the CZTS cell properties.
We report the performance of Cu2ZnSnS4 (CZTS) thin film solar cell that showed efficiency in the range of 6.2% without an anti-reflection coating. Initially, the CZTS precursor film was co-sputtered using three different targets; copper (Cu), tin sulfide (SnS) and zinc sulfide (ZnS). The Cu target was subjected to DC power, and RF power was used for the SnS and ZnS targets. The as-grown CZTS film was sulfurized in a H2S/N2 environment at 525°C, which re-crystalized the film with grain sizes in the range of 1μm. Cadmium sulfide (CdS) was used as the n-type layer. Current–voltage (I–V), quantum efficiency (QE) and capacitance–voltage (C–V) measurements were used to characterize the cell device. The modeling and analysis of QE and CV data showed that a significant portion of the CZTS layer did not contribute to the photo-generation. Optimizing CZTS phase purity, improving QE in the broader wavelength region, and increasing minority carrier lifetime are necessary steps to further improve CZTS device performance.</description><identifier>ISSN: 0038-092X</identifier><identifier>EISSN: 1471-1257</identifier><identifier>DOI: 10.1016/j.solener.2013.11.035</identifier><identifier>CODEN: SRENA4</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Cadmium ; CAPACITANCE ; Co-sputtering ; Copper ; COPPER SULFIDE ; Cu2ZnSnS4 ; CZT ; Devices ; Direct energy conversion and energy accumulation ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; ELECTRONIC PRODUCTS ; Energy ; Exact sciences and technology ; I–V/QE characteristics ; Natural energy ; Photoelectric conversion ; Photovoltaic cells ; Photovoltaic conversion ; Solar cells ; Solar cells. Photoelectrochemical cells ; Solar energy ; Solar power generation ; SPUTTERING ; SULFIDES ; Thin film solar cells ; THIN FILMS ; Tin ; ZINC SULFIDE ; Zinc sulfides</subject><ispartof>Solar energy, 2014-02, Vol.100, p.23-30</ispartof><rights>2013 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Pergamon Press Inc. Feb 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c532t-384205b186da07570b592ac5fef5b80f177df5b5b1403530cb6db02dd805213b3</citedby><cites>FETCH-LOGICAL-c532t-384205b186da07570b592ac5fef5b80f177df5b5b1403530cb6db02dd805213b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0038092X13005161$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28126795$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Dhakal, Tara P.</creatorcontrib><creatorcontrib>Peng, Chien–Yi</creatorcontrib><creatorcontrib>Reid Tobias, R.</creatorcontrib><creatorcontrib>Dasharathy, Ramesh</creatorcontrib><creatorcontrib>Westgate, Charles R.</creatorcontrib><title>Characterization of a CZTS thin film solar cell grown by sputtering method</title><title>Solar energy</title><description>•6.2% CZTS/CdS solar cell without AR coating.•QE modeling shows less than half the thickness of the CZTS layer contributes to photocurrent.•Detailed characterization of the CZTS cell properties.
We report the performance of Cu2ZnSnS4 (CZTS) thin film solar cell that showed efficiency in the range of 6.2% without an anti-reflection coating. Initially, the CZTS precursor film was co-sputtered using three different targets; copper (Cu), tin sulfide (SnS) and zinc sulfide (ZnS). The Cu target was subjected to DC power, and RF power was used for the SnS and ZnS targets. The as-grown CZTS film was sulfurized in a H2S/N2 environment at 525°C, which re-crystalized the film with grain sizes in the range of 1μm. Cadmium sulfide (CdS) was used as the n-type layer. Current–voltage (I–V), quantum efficiency (QE) and capacitance–voltage (C–V) measurements were used to characterize the cell device. The modeling and analysis of QE and CV data showed that a significant portion of the CZTS layer did not contribute to the photo-generation. Optimizing CZTS phase purity, improving QE in the broader wavelength region, and increasing minority carrier lifetime are necessary steps to further improve CZTS device performance.</description><subject>Applied sciences</subject><subject>Cadmium</subject><subject>CAPACITANCE</subject><subject>Co-sputtering</subject><subject>Copper</subject><subject>COPPER SULFIDE</subject><subject>Cu2ZnSnS4</subject><subject>CZT</subject><subject>Devices</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>ELECTRONIC PRODUCTS</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>I–V/QE characteristics</subject><subject>Natural energy</subject><subject>Photoelectric conversion</subject><subject>Photovoltaic cells</subject><subject>Photovoltaic conversion</subject><subject>Solar cells</subject><subject>Solar cells. Photoelectrochemical cells</subject><subject>Solar energy</subject><subject>Solar power generation</subject><subject>SPUTTERING</subject><subject>SULFIDES</subject><subject>Thin film solar cells</subject><subject>THIN FILMS</subject><subject>Tin</subject><subject>ZINC SULFIDE</subject><subject>Zinc sulfides</subject><issn>0038-092X</issn><issn>1471-1257</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkU-LFDEQxYMoOM76EYSACF66rUo6nfRJZFj_sbAHVxAvIZ1O72ToScakR9n99KaZwYOX3VPV4Vev6tUj5BVCjYDtu12d4-SCSzUD5DViDVw8IStsJFbIhHxKVgBcVdCxH8_Ji5x3AChRyRX5utmaZOzskr83s4-BxpEauvl5843OWx_o6Kc9LfomUeumid6m-CfQ_o7mw3FexsIt3bt5G4cL8mw0U3Yvz3VNvn-8vNl8rq6uP33ZfLiqrOBsrrhqGIgeVTsYkEJCLzpmrBjdKHoFI0o5lK4QTbHBwfbt0AMbBgWCIe_5mrw96R5S_HV0edZ7n5fbTHDxmDW2UnZSMaEeRkUDjDUc2kegDLgs_xYFff0fuovHFIpnjU0HrRTYNoUSJ8qmmHNyoz4kvzfpTiPoJTe90-fc9JKbRtSL4TV5c1Y32ZppTCZYn_8NM4Wsld3CvT9xrvz6ty8q2XoXrBt8cnbWQ_QPbPoL3mWt6g</recordid><startdate>20140201</startdate><enddate>20140201</enddate><creator>Dhakal, Tara P.</creator><creator>Peng, Chien–Yi</creator><creator>Reid Tobias, R.</creator><creator>Dasharathy, Ramesh</creator><creator>Westgate, Charles R.</creator><general>Elsevier Ltd</general><general>Elsevier</general><general>Pergamon Press Inc</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><scope>7TG</scope><scope>KL.</scope><scope>7U5</scope><scope>H8G</scope><scope>JG9</scope></search><sort><creationdate>20140201</creationdate><title>Characterization of a CZTS thin film solar cell grown by sputtering method</title><author>Dhakal, Tara P. ; Peng, Chien–Yi ; Reid Tobias, R. ; Dasharathy, Ramesh ; Westgate, Charles R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c532t-384205b186da07570b592ac5fef5b80f177df5b5b1403530cb6db02dd805213b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Cadmium</topic><topic>CAPACITANCE</topic><topic>Co-sputtering</topic><topic>Copper</topic><topic>COPPER SULFIDE</topic><topic>Cu2ZnSnS4</topic><topic>CZT</topic><topic>Devices</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>ELECTRONIC PRODUCTS</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>I–V/QE characteristics</topic><topic>Natural energy</topic><topic>Photoelectric conversion</topic><topic>Photovoltaic cells</topic><topic>Photovoltaic conversion</topic><topic>Solar cells</topic><topic>Solar cells. Photoelectrochemical cells</topic><topic>Solar energy</topic><topic>Solar power generation</topic><topic>SPUTTERING</topic><topic>SULFIDES</topic><topic>Thin film solar cells</topic><topic>THIN FILMS</topic><topic>Tin</topic><topic>ZINC SULFIDE</topic><topic>Zinc sulfides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dhakal, Tara P.</creatorcontrib><creatorcontrib>Peng, Chien–Yi</creatorcontrib><creatorcontrib>Reid Tobias, R.</creatorcontrib><creatorcontrib>Dasharathy, Ramesh</creatorcontrib><creatorcontrib>Westgate, Charles R.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><jtitle>Solar energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dhakal, Tara P.</au><au>Peng, Chien–Yi</au><au>Reid Tobias, R.</au><au>Dasharathy, Ramesh</au><au>Westgate, Charles R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of a CZTS thin film solar cell grown by sputtering method</atitle><jtitle>Solar energy</jtitle><date>2014-02-01</date><risdate>2014</risdate><volume>100</volume><spage>23</spage><epage>30</epage><pages>23-30</pages><issn>0038-092X</issn><eissn>1471-1257</eissn><coden>SRENA4</coden><abstract>•6.2% CZTS/CdS solar cell without AR coating.•QE modeling shows less than half the thickness of the CZTS layer contributes to photocurrent.•Detailed characterization of the CZTS cell properties.
We report the performance of Cu2ZnSnS4 (CZTS) thin film solar cell that showed efficiency in the range of 6.2% without an anti-reflection coating. Initially, the CZTS precursor film was co-sputtered using three different targets; copper (Cu), tin sulfide (SnS) and zinc sulfide (ZnS). The Cu target was subjected to DC power, and RF power was used for the SnS and ZnS targets. The as-grown CZTS film was sulfurized in a H2S/N2 environment at 525°C, which re-crystalized the film with grain sizes in the range of 1μm. Cadmium sulfide (CdS) was used as the n-type layer. Current–voltage (I–V), quantum efficiency (QE) and capacitance–voltage (C–V) measurements were used to characterize the cell device. The modeling and analysis of QE and CV data showed that a significant portion of the CZTS layer did not contribute to the photo-generation. Optimizing CZTS phase purity, improving QE in the broader wavelength region, and increasing minority carrier lifetime are necessary steps to further improve CZTS device performance.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.solener.2013.11.035</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0038-092X |
ispartof | Solar energy, 2014-02, Vol.100, p.23-30 |
issn | 0038-092X 1471-1257 |
language | eng |
recordid | cdi_proquest_miscellaneous_1677978258 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Applied sciences Cadmium CAPACITANCE Co-sputtering Copper COPPER SULFIDE Cu2ZnSnS4 CZT Devices Direct energy conversion and energy accumulation Electrical engineering. Electrical power engineering Electrical power engineering ELECTRONIC PRODUCTS Energy Exact sciences and technology I–V/QE characteristics Natural energy Photoelectric conversion Photovoltaic cells Photovoltaic conversion Solar cells Solar cells. Photoelectrochemical cells Solar energy Solar power generation SPUTTERING SULFIDES Thin film solar cells THIN FILMS Tin ZINC SULFIDE Zinc sulfides |
title | Characterization of a CZTS thin film solar cell grown by sputtering method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T22%3A44%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20a%20CZTS%20thin%20film%20solar%20cell%20grown%20by%20sputtering%20method&rft.jtitle=Solar%20energy&rft.au=Dhakal,%20Tara%20P.&rft.date=2014-02-01&rft.volume=100&rft.spage=23&rft.epage=30&rft.pages=23-30&rft.issn=0038-092X&rft.eissn=1471-1257&rft.coden=SRENA4&rft_id=info:doi/10.1016/j.solener.2013.11.035&rft_dat=%3Cproquest_cross%3E3186540701%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1490675164&rft_id=info:pmid/&rft_els_id=S0038092X13005161&rfr_iscdi=true |