Linear active disturbance rejection control of the hovercraft vessel model

A linearizing robust dynamic output feedback control scheme is proposed for earth coordinate position variables trajectory tracking tasks in a hovercraft vessel model. The controller design is carried out using only position and orientation measurements. A highly simplified model obtained from flatn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ocean engineering 2015-03, Vol.96, p.100-108
Hauptverfasser: Morales, R., Sira-Ramírez, H., Somolinos, J.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 108
container_issue
container_start_page 100
container_title Ocean engineering
container_volume 96
creator Morales, R.
Sira-Ramírez, H.
Somolinos, J.A.
description A linearizing robust dynamic output feedback control scheme is proposed for earth coordinate position variables trajectory tracking tasks in a hovercraft vessel model. The controller design is carried out using only position and orientation measurements. A highly simplified model obtained from flatness considerations is proposed which vastly simplifies the controller design task. Only the order of integration of the input-to-flat output subsystems, along with the associated input matrix gain, is retained in the simplified model. All the unknown additive nonlinearities and exogenous perturbations are lumped into an absolutely bounded, unstructured, vector of time signals whose components may be locally on-line estimated by means of a high gain Generalized Proportional Integral (GPI) observer. GPI observers are the dual counterpart of GPI controllers providing accurate simultaneous estimation of each flat output associated phase variables and of the exogenous and endogenous perturbation inputs. These observers exhibit remarkably convenient self-updating internal models of the unknown disturbance input vector components. These two key pieces of on-line information are used in the proposed feedback controller to conform an active disturbance rejection, or disturbance accommodation, control scheme. Simulation results validate the effectiveness of the proposed design method. •A robust dynamic feedback control scheme for the hovercraft model has been presented.•The controller is carried out using only position and orientation measurements.•A high simplified model is only needed to control the hovercraft.•Simulation results illustrate the effectiveness of the proposed control.
doi_str_mv 10.1016/j.oceaneng.2014.12.031
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677976010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0029801814004880</els_id><sourcerecordid>1673399289</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-a36a392f82fbf2b81e393851af4e86dbb6e0ca95073495a604fbb5ed22edce323</originalsourceid><addsrcrecordid>eNqN0E1LxDAQBuAgCq6rf0Fy9NI6Sdo0uSniJwte9BzSdOJm6TZr0l3w39tl9ayngeF9B-Yh5JJByYDJ61UZHdoBh4-SA6tKxksQ7IjMmGpEUfNaHZMZANeFAqZOyVnOKwCQEsSMvCzCgDZR68awQ9qFPG5TaweHNOEKp20cqIvDmGJPo6fjEuky7jC5ZP1Id5gz9nQdO-zPyYm3fcaLnzkn7w_3b3dPxeL18fnudlG4isuxsEJaoblX3Leet4qh0ELVzPoKlezaViI4q2toRKVrK6HybVtjxzl2DgUXc3J1uLtJ8XOLeTTrkB32_WQQt9kw2TS6kcDgP1EhtOZKT1F5iLoUc07ozSaFtU1fhoHZO5uV-XU2e2fDuJmcp-LNoYjTz7uAyWQXcALsQpr8TBfDXye-AaN4inw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1673399289</pqid></control><display><type>article</type><title>Linear active disturbance rejection control of the hovercraft vessel model</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Morales, R. ; Sira-Ramírez, H. ; Somolinos, J.A.</creator><creatorcontrib>Morales, R. ; Sira-Ramírez, H. ; Somolinos, J.A.</creatorcontrib><description>A linearizing robust dynamic output feedback control scheme is proposed for earth coordinate position variables trajectory tracking tasks in a hovercraft vessel model. The controller design is carried out using only position and orientation measurements. A highly simplified model obtained from flatness considerations is proposed which vastly simplifies the controller design task. Only the order of integration of the input-to-flat output subsystems, along with the associated input matrix gain, is retained in the simplified model. All the unknown additive nonlinearities and exogenous perturbations are lumped into an absolutely bounded, unstructured, vector of time signals whose components may be locally on-line estimated by means of a high gain Generalized Proportional Integral (GPI) observer. GPI observers are the dual counterpart of GPI controllers providing accurate simultaneous estimation of each flat output associated phase variables and of the exogenous and endogenous perturbation inputs. These observers exhibit remarkably convenient self-updating internal models of the unknown disturbance input vector components. These two key pieces of on-line information are used in the proposed feedback controller to conform an active disturbance rejection, or disturbance accommodation, control scheme. Simulation results validate the effectiveness of the proposed design method. •A robust dynamic feedback control scheme for the hovercraft model has been presented.•The controller is carried out using only position and orientation measurements.•A high simplified model is only needed to control the hovercraft.•Simulation results illustrate the effectiveness of the proposed control.</description><identifier>ISSN: 0029-8018</identifier><identifier>EISSN: 1873-5258</identifier><identifier>DOI: 10.1016/j.oceaneng.2014.12.031</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Active control ; Disturbance estimation ; Disturbances ; Flat systems ; GPI control ; Hovercraft ; Mathematical analysis ; Mathematical models ; Observer design ; Perturbation methods ; Rejection ; Trajectory planning ; Vectors (mathematics) ; Vessels</subject><ispartof>Ocean engineering, 2015-03, Vol.96, p.100-108</ispartof><rights>2014 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-a36a392f82fbf2b81e393851af4e86dbb6e0ca95073495a604fbb5ed22edce323</citedby><cites>FETCH-LOGICAL-c426t-a36a392f82fbf2b81e393851af4e86dbb6e0ca95073495a604fbb5ed22edce323</cites><orcidid>0000-0002-9327-8030</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.oceaneng.2014.12.031$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Morales, R.</creatorcontrib><creatorcontrib>Sira-Ramírez, H.</creatorcontrib><creatorcontrib>Somolinos, J.A.</creatorcontrib><title>Linear active disturbance rejection control of the hovercraft vessel model</title><title>Ocean engineering</title><description>A linearizing robust dynamic output feedback control scheme is proposed for earth coordinate position variables trajectory tracking tasks in a hovercraft vessel model. The controller design is carried out using only position and orientation measurements. A highly simplified model obtained from flatness considerations is proposed which vastly simplifies the controller design task. Only the order of integration of the input-to-flat output subsystems, along with the associated input matrix gain, is retained in the simplified model. All the unknown additive nonlinearities and exogenous perturbations are lumped into an absolutely bounded, unstructured, vector of time signals whose components may be locally on-line estimated by means of a high gain Generalized Proportional Integral (GPI) observer. GPI observers are the dual counterpart of GPI controllers providing accurate simultaneous estimation of each flat output associated phase variables and of the exogenous and endogenous perturbation inputs. These observers exhibit remarkably convenient self-updating internal models of the unknown disturbance input vector components. These two key pieces of on-line information are used in the proposed feedback controller to conform an active disturbance rejection, or disturbance accommodation, control scheme. Simulation results validate the effectiveness of the proposed design method. •A robust dynamic feedback control scheme for the hovercraft model has been presented.•The controller is carried out using only position and orientation measurements.•A high simplified model is only needed to control the hovercraft.•Simulation results illustrate the effectiveness of the proposed control.</description><subject>Active control</subject><subject>Disturbance estimation</subject><subject>Disturbances</subject><subject>Flat systems</subject><subject>GPI control</subject><subject>Hovercraft</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Observer design</subject><subject>Perturbation methods</subject><subject>Rejection</subject><subject>Trajectory planning</subject><subject>Vectors (mathematics)</subject><subject>Vessels</subject><issn>0029-8018</issn><issn>1873-5258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqN0E1LxDAQBuAgCq6rf0Fy9NI6Sdo0uSniJwte9BzSdOJm6TZr0l3w39tl9ayngeF9B-Yh5JJByYDJ61UZHdoBh4-SA6tKxksQ7IjMmGpEUfNaHZMZANeFAqZOyVnOKwCQEsSMvCzCgDZR68awQ9qFPG5TaweHNOEKp20cqIvDmGJPo6fjEuky7jC5ZP1Id5gz9nQdO-zPyYm3fcaLnzkn7w_3b3dPxeL18fnudlG4isuxsEJaoblX3Leet4qh0ELVzPoKlezaViI4q2toRKVrK6HybVtjxzl2DgUXc3J1uLtJ8XOLeTTrkB32_WQQt9kw2TS6kcDgP1EhtOZKT1F5iLoUc07ozSaFtU1fhoHZO5uV-XU2e2fDuJmcp-LNoYjTz7uAyWQXcALsQpr8TBfDXye-AaN4inw</recordid><startdate>20150301</startdate><enddate>20150301</enddate><creator>Morales, R.</creator><creator>Sira-Ramírez, H.</creator><creator>Somolinos, J.A.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9327-8030</orcidid></search><sort><creationdate>20150301</creationdate><title>Linear active disturbance rejection control of the hovercraft vessel model</title><author>Morales, R. ; Sira-Ramírez, H. ; Somolinos, J.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-a36a392f82fbf2b81e393851af4e86dbb6e0ca95073495a604fbb5ed22edce323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Active control</topic><topic>Disturbance estimation</topic><topic>Disturbances</topic><topic>Flat systems</topic><topic>GPI control</topic><topic>Hovercraft</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Observer design</topic><topic>Perturbation methods</topic><topic>Rejection</topic><topic>Trajectory planning</topic><topic>Vectors (mathematics)</topic><topic>Vessels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morales, R.</creatorcontrib><creatorcontrib>Sira-Ramírez, H.</creatorcontrib><creatorcontrib>Somolinos, J.A.</creatorcontrib><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Ocean engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morales, R.</au><au>Sira-Ramírez, H.</au><au>Somolinos, J.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linear active disturbance rejection control of the hovercraft vessel model</atitle><jtitle>Ocean engineering</jtitle><date>2015-03-01</date><risdate>2015</risdate><volume>96</volume><spage>100</spage><epage>108</epage><pages>100-108</pages><issn>0029-8018</issn><eissn>1873-5258</eissn><abstract>A linearizing robust dynamic output feedback control scheme is proposed for earth coordinate position variables trajectory tracking tasks in a hovercraft vessel model. The controller design is carried out using only position and orientation measurements. A highly simplified model obtained from flatness considerations is proposed which vastly simplifies the controller design task. Only the order of integration of the input-to-flat output subsystems, along with the associated input matrix gain, is retained in the simplified model. All the unknown additive nonlinearities and exogenous perturbations are lumped into an absolutely bounded, unstructured, vector of time signals whose components may be locally on-line estimated by means of a high gain Generalized Proportional Integral (GPI) observer. GPI observers are the dual counterpart of GPI controllers providing accurate simultaneous estimation of each flat output associated phase variables and of the exogenous and endogenous perturbation inputs. These observers exhibit remarkably convenient self-updating internal models of the unknown disturbance input vector components. These two key pieces of on-line information are used in the proposed feedback controller to conform an active disturbance rejection, or disturbance accommodation, control scheme. Simulation results validate the effectiveness of the proposed design method. •A robust dynamic feedback control scheme for the hovercraft model has been presented.•The controller is carried out using only position and orientation measurements.•A high simplified model is only needed to control the hovercraft.•Simulation results illustrate the effectiveness of the proposed control.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.oceaneng.2014.12.031</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9327-8030</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0029-8018
ispartof Ocean engineering, 2015-03, Vol.96, p.100-108
issn 0029-8018
1873-5258
language eng
recordid cdi_proquest_miscellaneous_1677976010
source ScienceDirect Journals (5 years ago - present)
subjects Active control
Disturbance estimation
Disturbances
Flat systems
GPI control
Hovercraft
Mathematical analysis
Mathematical models
Observer design
Perturbation methods
Rejection
Trajectory planning
Vectors (mathematics)
Vessels
title Linear active disturbance rejection control of the hovercraft vessel model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T13%3A43%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linear%20active%20disturbance%20rejection%20control%20of%20the%20hovercraft%20vessel%20model&rft.jtitle=Ocean%20engineering&rft.au=Morales,%20R.&rft.date=2015-03-01&rft.volume=96&rft.spage=100&rft.epage=108&rft.pages=100-108&rft.issn=0029-8018&rft.eissn=1873-5258&rft_id=info:doi/10.1016/j.oceaneng.2014.12.031&rft_dat=%3Cproquest_cross%3E1673399289%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1673399289&rft_id=info:pmid/&rft_els_id=S0029801814004880&rfr_iscdi=true