Scenario grouping in a progressive hedging-based meta-heuristic for stochastic network design
We propose a methodological approach to build strategies for grouping scenarios as defined by the type of scenario decomposition, type of grouping, and the measures specifying scenario similarity. We evaluate these strategies in the context of stochastic network design by analyzing the behavior and...
Gespeichert in:
Veröffentlicht in: | Computers & operations research 2014-03, Vol.43, p.90-99 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 99 |
---|---|
container_issue | |
container_start_page | 90 |
container_title | Computers & operations research |
container_volume | 43 |
creator | Crainic, Teodor Gabriel Hewitt, Mike Rei, Walter |
description | We propose a methodological approach to build strategies for grouping scenarios as defined by the type of scenario decomposition, type of grouping, and the measures specifying scenario similarity. We evaluate these strategies in the context of stochastic network design by analyzing the behavior and performance of a new progressive hedging-based meta-heuristic for stochastic network design that solves subproblems comprising multiple scenarios. We compare the proposed strategies not only among themselves, but also against the strategy of grouping scenarios randomly and the lower bound provided by a state-of-the-art MIP solver. The results show that, by solving multi-scenario subproblems generated by the strategies we propose, the meta-heuristic produces better results in terms of solution quality and computing efficiency than when either single-scenario subproblems or multiple-scenario subproblems that are generated by picking scenarios at random are solved. The results also show that, considering all the strategies tested, the covering strategy with respect to commodity demands leads to the highest quality solutions and the quickest convergence. |
doi_str_mv | 10.1016/j.cor.2013.08.020 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677975454</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0305054813002268</els_id><sourcerecordid>1530977657</sourcerecordid><originalsourceid>FETCH-LOGICAL-c485t-c52aadd0ef4d61f38969db368f31449a6f6a721bda3bd0c76b7e0ff3184608013</originalsourceid><addsrcrecordid>eNqNkU2LFDEQhoMoOK7-AG8BEbx0W-l0J2k8yeLHwoIHFbxISCeVnowzyZh0r_jvzTjLHjyodQlFPVV5q15CnjJoGTDxctfalNsOGG9BtdDBPbJhSvJGiuHLfbIBDkMDQ68ekkel7KCG7NiGfP1oMZocEp1zWo8hzjREaugxpzljKeEG6RbdXAvNZAo6esDFNFtccyhLsNSnTMuS7Nb8TiMuP1L-Rh2WMMfH5IE3-4JPbt8L8vntm0-X75vrD--uLl9fN7ZXw9LYoTPGOUDfO8E8V6MY3cSF8pz1_WiEF6aqnZzhkwMrxSQRfC2qXoCqO1-QF-e5Vfb3FcuiD6FY3O9NxLQWzYSUoxz6of83OgjJoMoa_gPlMMp6YFnRZ3-gu7TmWHfWrBcjMKm6E8XOlM2plIxeH3M4mPxTM9AnG_VOVxv1yUYNSlcba8_z28mmWLP32UQbyl1jpzgwxbvKvTpzWO98EzDrYgNGiy5ktIt2Kfzll1-jurGy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1469017827</pqid></control><display><type>article</type><title>Scenario grouping in a progressive hedging-based meta-heuristic for stochastic network design</title><source>Elsevier ScienceDirect Journals</source><creator>Crainic, Teodor Gabriel ; Hewitt, Mike ; Rei, Walter</creator><creatorcontrib>Crainic, Teodor Gabriel ; Hewitt, Mike ; Rei, Walter</creatorcontrib><description>We propose a methodological approach to build strategies for grouping scenarios as defined by the type of scenario decomposition, type of grouping, and the measures specifying scenario similarity. We evaluate these strategies in the context of stochastic network design by analyzing the behavior and performance of a new progressive hedging-based meta-heuristic for stochastic network design that solves subproblems comprising multiple scenarios. We compare the proposed strategies not only among themselves, but also against the strategy of grouping scenarios randomly and the lower bound provided by a state-of-the-art MIP solver. The results show that, by solving multi-scenario subproblems generated by the strategies we propose, the meta-heuristic produces better results in terms of solution quality and computing efficiency than when either single-scenario subproblems or multiple-scenario subproblems that are generated by picking scenarios at random are solved. The results also show that, considering all the strategies tested, the covering strategy with respect to commodity demands leads to the highest quality solutions and the quickest convergence.</description><identifier>ISSN: 0305-0548</identifier><identifier>EISSN: 1873-765X</identifier><identifier>EISSN: 0305-0548</identifier><identifier>DOI: 10.1016/j.cor.2013.08.020</identifier><identifier>CODEN: CMORAP</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Commodities ; Exact sciences and technology ; Flows in networks. Combinatorial problems ; Heuristic ; Heuristic methods ; Integer programming ; Machine learning ; Mathematical models ; Mathematical problems ; Network design ; Network topologies ; Networks ; Operational research and scientific management ; Operational research. Management science ; Operations research ; Progressive hedging ; Scenario clustering ; Similarity ; Stochastic models ; Stochastic programs ; Stochasticity ; Strategy ; Studies</subject><ispartof>Computers & operations research, 2014-03, Vol.43, p.90-99</ispartof><rights>2013 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Pergamon Press Inc. Mar 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c485t-c52aadd0ef4d61f38969db368f31449a6f6a721bda3bd0c76b7e0ff3184608013</citedby><cites>FETCH-LOGICAL-c485t-c52aadd0ef4d61f38969db368f31449a6f6a721bda3bd0c76b7e0ff3184608013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0305054813002268$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28301832$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Crainic, Teodor Gabriel</creatorcontrib><creatorcontrib>Hewitt, Mike</creatorcontrib><creatorcontrib>Rei, Walter</creatorcontrib><title>Scenario grouping in a progressive hedging-based meta-heuristic for stochastic network design</title><title>Computers & operations research</title><description>We propose a methodological approach to build strategies for grouping scenarios as defined by the type of scenario decomposition, type of grouping, and the measures specifying scenario similarity. We evaluate these strategies in the context of stochastic network design by analyzing the behavior and performance of a new progressive hedging-based meta-heuristic for stochastic network design that solves subproblems comprising multiple scenarios. We compare the proposed strategies not only among themselves, but also against the strategy of grouping scenarios randomly and the lower bound provided by a state-of-the-art MIP solver. The results show that, by solving multi-scenario subproblems generated by the strategies we propose, the meta-heuristic produces better results in terms of solution quality and computing efficiency than when either single-scenario subproblems or multiple-scenario subproblems that are generated by picking scenarios at random are solved. The results also show that, considering all the strategies tested, the covering strategy with respect to commodity demands leads to the highest quality solutions and the quickest convergence.</description><subject>Applied sciences</subject><subject>Commodities</subject><subject>Exact sciences and technology</subject><subject>Flows in networks. Combinatorial problems</subject><subject>Heuristic</subject><subject>Heuristic methods</subject><subject>Integer programming</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Mathematical problems</subject><subject>Network design</subject><subject>Network topologies</subject><subject>Networks</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Operations research</subject><subject>Progressive hedging</subject><subject>Scenario clustering</subject><subject>Similarity</subject><subject>Stochastic models</subject><subject>Stochastic programs</subject><subject>Stochasticity</subject><subject>Strategy</subject><subject>Studies</subject><issn>0305-0548</issn><issn>1873-765X</issn><issn>0305-0548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkU2LFDEQhoMoOK7-AG8BEbx0W-l0J2k8yeLHwoIHFbxISCeVnowzyZh0r_jvzTjLHjyodQlFPVV5q15CnjJoGTDxctfalNsOGG9BtdDBPbJhSvJGiuHLfbIBDkMDQ68ekkel7KCG7NiGfP1oMZocEp1zWo8hzjREaugxpzljKeEG6RbdXAvNZAo6esDFNFtccyhLsNSnTMuS7Nb8TiMuP1L-Rh2WMMfH5IE3-4JPbt8L8vntm0-X75vrD--uLl9fN7ZXw9LYoTPGOUDfO8E8V6MY3cSF8pz1_WiEF6aqnZzhkwMrxSQRfC2qXoCqO1-QF-e5Vfb3FcuiD6FY3O9NxLQWzYSUoxz6of83OgjJoMoa_gPlMMp6YFnRZ3-gu7TmWHfWrBcjMKm6E8XOlM2plIxeH3M4mPxTM9AnG_VOVxv1yUYNSlcba8_z28mmWLP32UQbyl1jpzgwxbvKvTpzWO98EzDrYgNGiy5ktIt2Kfzll1-jurGy</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>Crainic, Teodor Gabriel</creator><creator>Hewitt, Mike</creator><creator>Rei, Walter</creator><general>Elsevier Ltd</general><general>Elsevier</general><general>Pergamon Press Inc</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140301</creationdate><title>Scenario grouping in a progressive hedging-based meta-heuristic for stochastic network design</title><author>Crainic, Teodor Gabriel ; Hewitt, Mike ; Rei, Walter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c485t-c52aadd0ef4d61f38969db368f31449a6f6a721bda3bd0c76b7e0ff3184608013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Commodities</topic><topic>Exact sciences and technology</topic><topic>Flows in networks. Combinatorial problems</topic><topic>Heuristic</topic><topic>Heuristic methods</topic><topic>Integer programming</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Mathematical problems</topic><topic>Network design</topic><topic>Network topologies</topic><topic>Networks</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Operations research</topic><topic>Progressive hedging</topic><topic>Scenario clustering</topic><topic>Similarity</topic><topic>Stochastic models</topic><topic>Stochastic programs</topic><topic>Stochasticity</topic><topic>Strategy</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Crainic, Teodor Gabriel</creatorcontrib><creatorcontrib>Hewitt, Mike</creatorcontrib><creatorcontrib>Rei, Walter</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers & operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Crainic, Teodor Gabriel</au><au>Hewitt, Mike</au><au>Rei, Walter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scenario grouping in a progressive hedging-based meta-heuristic for stochastic network design</atitle><jtitle>Computers & operations research</jtitle><date>2014-03-01</date><risdate>2014</risdate><volume>43</volume><spage>90</spage><epage>99</epage><pages>90-99</pages><issn>0305-0548</issn><eissn>1873-765X</eissn><eissn>0305-0548</eissn><coden>CMORAP</coden><abstract>We propose a methodological approach to build strategies for grouping scenarios as defined by the type of scenario decomposition, type of grouping, and the measures specifying scenario similarity. We evaluate these strategies in the context of stochastic network design by analyzing the behavior and performance of a new progressive hedging-based meta-heuristic for stochastic network design that solves subproblems comprising multiple scenarios. We compare the proposed strategies not only among themselves, but also against the strategy of grouping scenarios randomly and the lower bound provided by a state-of-the-art MIP solver. The results show that, by solving multi-scenario subproblems generated by the strategies we propose, the meta-heuristic produces better results in terms of solution quality and computing efficiency than when either single-scenario subproblems or multiple-scenario subproblems that are generated by picking scenarios at random are solved. The results also show that, considering all the strategies tested, the covering strategy with respect to commodity demands leads to the highest quality solutions and the quickest convergence.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.cor.2013.08.020</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-0548 |
ispartof | Computers & operations research, 2014-03, Vol.43, p.90-99 |
issn | 0305-0548 1873-765X 0305-0548 |
language | eng |
recordid | cdi_proquest_miscellaneous_1677975454 |
source | Elsevier ScienceDirect Journals |
subjects | Applied sciences Commodities Exact sciences and technology Flows in networks. Combinatorial problems Heuristic Heuristic methods Integer programming Machine learning Mathematical models Mathematical problems Network design Network topologies Networks Operational research and scientific management Operational research. Management science Operations research Progressive hedging Scenario clustering Similarity Stochastic models Stochastic programs Stochasticity Strategy Studies |
title | Scenario grouping in a progressive hedging-based meta-heuristic for stochastic network design |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T22%3A32%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scenario%20grouping%20in%20a%20progressive%20hedging-based%20meta-heuristic%20for%20stochastic%20network%20design&rft.jtitle=Computers%20&%20operations%20research&rft.au=Crainic,%20Teodor%20Gabriel&rft.date=2014-03-01&rft.volume=43&rft.spage=90&rft.epage=99&rft.pages=90-99&rft.issn=0305-0548&rft.eissn=1873-765X&rft.coden=CMORAP&rft_id=info:doi/10.1016/j.cor.2013.08.020&rft_dat=%3Cproquest_cross%3E1530977657%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1469017827&rft_id=info:pmid/&rft_els_id=S0305054813002268&rfr_iscdi=true |