Scenario grouping in a progressive hedging-based meta-heuristic for stochastic network design

We propose a methodological approach to build strategies for grouping scenarios as defined by the type of scenario decomposition, type of grouping, and the measures specifying scenario similarity. We evaluate these strategies in the context of stochastic network design by analyzing the behavior and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & operations research 2014-03, Vol.43, p.90-99
Hauptverfasser: Crainic, Teodor Gabriel, Hewitt, Mike, Rei, Walter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 99
container_issue
container_start_page 90
container_title Computers & operations research
container_volume 43
creator Crainic, Teodor Gabriel
Hewitt, Mike
Rei, Walter
description We propose a methodological approach to build strategies for grouping scenarios as defined by the type of scenario decomposition, type of grouping, and the measures specifying scenario similarity. We evaluate these strategies in the context of stochastic network design by analyzing the behavior and performance of a new progressive hedging-based meta-heuristic for stochastic network design that solves subproblems comprising multiple scenarios. We compare the proposed strategies not only among themselves, but also against the strategy of grouping scenarios randomly and the lower bound provided by a state-of-the-art MIP solver. The results show that, by solving multi-scenario subproblems generated by the strategies we propose, the meta-heuristic produces better results in terms of solution quality and computing efficiency than when either single-scenario subproblems or multiple-scenario subproblems that are generated by picking scenarios at random are solved. The results also show that, considering all the strategies tested, the covering strategy with respect to commodity demands leads to the highest quality solutions and the quickest convergence.
doi_str_mv 10.1016/j.cor.2013.08.020
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677975454</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0305054813002268</els_id><sourcerecordid>1530977657</sourcerecordid><originalsourceid>FETCH-LOGICAL-c485t-c52aadd0ef4d61f38969db368f31449a6f6a721bda3bd0c76b7e0ff3184608013</originalsourceid><addsrcrecordid>eNqNkU2LFDEQhoMoOK7-AG8BEbx0W-l0J2k8yeLHwoIHFbxISCeVnowzyZh0r_jvzTjLHjyodQlFPVV5q15CnjJoGTDxctfalNsOGG9BtdDBPbJhSvJGiuHLfbIBDkMDQ68ekkel7KCG7NiGfP1oMZocEp1zWo8hzjREaugxpzljKeEG6RbdXAvNZAo6esDFNFtccyhLsNSnTMuS7Nb8TiMuP1L-Rh2WMMfH5IE3-4JPbt8L8vntm0-X75vrD--uLl9fN7ZXw9LYoTPGOUDfO8E8V6MY3cSF8pz1_WiEF6aqnZzhkwMrxSQRfC2qXoCqO1-QF-e5Vfb3FcuiD6FY3O9NxLQWzYSUoxz6of83OgjJoMoa_gPlMMp6YFnRZ3-gu7TmWHfWrBcjMKm6E8XOlM2plIxeH3M4mPxTM9AnG_VOVxv1yUYNSlcba8_z28mmWLP32UQbyl1jpzgwxbvKvTpzWO98EzDrYgNGiy5ktIt2Kfzll1-jurGy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1469017827</pqid></control><display><type>article</type><title>Scenario grouping in a progressive hedging-based meta-heuristic for stochastic network design</title><source>Elsevier ScienceDirect Journals</source><creator>Crainic, Teodor Gabriel ; Hewitt, Mike ; Rei, Walter</creator><creatorcontrib>Crainic, Teodor Gabriel ; Hewitt, Mike ; Rei, Walter</creatorcontrib><description>We propose a methodological approach to build strategies for grouping scenarios as defined by the type of scenario decomposition, type of grouping, and the measures specifying scenario similarity. We evaluate these strategies in the context of stochastic network design by analyzing the behavior and performance of a new progressive hedging-based meta-heuristic for stochastic network design that solves subproblems comprising multiple scenarios. We compare the proposed strategies not only among themselves, but also against the strategy of grouping scenarios randomly and the lower bound provided by a state-of-the-art MIP solver. The results show that, by solving multi-scenario subproblems generated by the strategies we propose, the meta-heuristic produces better results in terms of solution quality and computing efficiency than when either single-scenario subproblems or multiple-scenario subproblems that are generated by picking scenarios at random are solved. The results also show that, considering all the strategies tested, the covering strategy with respect to commodity demands leads to the highest quality solutions and the quickest convergence.</description><identifier>ISSN: 0305-0548</identifier><identifier>EISSN: 1873-765X</identifier><identifier>EISSN: 0305-0548</identifier><identifier>DOI: 10.1016/j.cor.2013.08.020</identifier><identifier>CODEN: CMORAP</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Commodities ; Exact sciences and technology ; Flows in networks. Combinatorial problems ; Heuristic ; Heuristic methods ; Integer programming ; Machine learning ; Mathematical models ; Mathematical problems ; Network design ; Network topologies ; Networks ; Operational research and scientific management ; Operational research. Management science ; Operations research ; Progressive hedging ; Scenario clustering ; Similarity ; Stochastic models ; Stochastic programs ; Stochasticity ; Strategy ; Studies</subject><ispartof>Computers &amp; operations research, 2014-03, Vol.43, p.90-99</ispartof><rights>2013 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Pergamon Press Inc. Mar 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c485t-c52aadd0ef4d61f38969db368f31449a6f6a721bda3bd0c76b7e0ff3184608013</citedby><cites>FETCH-LOGICAL-c485t-c52aadd0ef4d61f38969db368f31449a6f6a721bda3bd0c76b7e0ff3184608013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0305054813002268$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28301832$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Crainic, Teodor Gabriel</creatorcontrib><creatorcontrib>Hewitt, Mike</creatorcontrib><creatorcontrib>Rei, Walter</creatorcontrib><title>Scenario grouping in a progressive hedging-based meta-heuristic for stochastic network design</title><title>Computers &amp; operations research</title><description>We propose a methodological approach to build strategies for grouping scenarios as defined by the type of scenario decomposition, type of grouping, and the measures specifying scenario similarity. We evaluate these strategies in the context of stochastic network design by analyzing the behavior and performance of a new progressive hedging-based meta-heuristic for stochastic network design that solves subproblems comprising multiple scenarios. We compare the proposed strategies not only among themselves, but also against the strategy of grouping scenarios randomly and the lower bound provided by a state-of-the-art MIP solver. The results show that, by solving multi-scenario subproblems generated by the strategies we propose, the meta-heuristic produces better results in terms of solution quality and computing efficiency than when either single-scenario subproblems or multiple-scenario subproblems that are generated by picking scenarios at random are solved. The results also show that, considering all the strategies tested, the covering strategy with respect to commodity demands leads to the highest quality solutions and the quickest convergence.</description><subject>Applied sciences</subject><subject>Commodities</subject><subject>Exact sciences and technology</subject><subject>Flows in networks. Combinatorial problems</subject><subject>Heuristic</subject><subject>Heuristic methods</subject><subject>Integer programming</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Mathematical problems</subject><subject>Network design</subject><subject>Network topologies</subject><subject>Networks</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Operations research</subject><subject>Progressive hedging</subject><subject>Scenario clustering</subject><subject>Similarity</subject><subject>Stochastic models</subject><subject>Stochastic programs</subject><subject>Stochasticity</subject><subject>Strategy</subject><subject>Studies</subject><issn>0305-0548</issn><issn>1873-765X</issn><issn>0305-0548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkU2LFDEQhoMoOK7-AG8BEbx0W-l0J2k8yeLHwoIHFbxISCeVnowzyZh0r_jvzTjLHjyodQlFPVV5q15CnjJoGTDxctfalNsOGG9BtdDBPbJhSvJGiuHLfbIBDkMDQ68ekkel7KCG7NiGfP1oMZocEp1zWo8hzjREaugxpzljKeEG6RbdXAvNZAo6esDFNFtccyhLsNSnTMuS7Nb8TiMuP1L-Rh2WMMfH5IE3-4JPbt8L8vntm0-X75vrD--uLl9fN7ZXw9LYoTPGOUDfO8E8V6MY3cSF8pz1_WiEF6aqnZzhkwMrxSQRfC2qXoCqO1-QF-e5Vfb3FcuiD6FY3O9NxLQWzYSUoxz6of83OgjJoMoa_gPlMMp6YFnRZ3-gu7TmWHfWrBcjMKm6E8XOlM2plIxeH3M4mPxTM9AnG_VOVxv1yUYNSlcba8_z28mmWLP32UQbyl1jpzgwxbvKvTpzWO98EzDrYgNGiy5ktIt2Kfzll1-jurGy</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>Crainic, Teodor Gabriel</creator><creator>Hewitt, Mike</creator><creator>Rei, Walter</creator><general>Elsevier Ltd</general><general>Elsevier</general><general>Pergamon Press Inc</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140301</creationdate><title>Scenario grouping in a progressive hedging-based meta-heuristic for stochastic network design</title><author>Crainic, Teodor Gabriel ; Hewitt, Mike ; Rei, Walter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c485t-c52aadd0ef4d61f38969db368f31449a6f6a721bda3bd0c76b7e0ff3184608013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Commodities</topic><topic>Exact sciences and technology</topic><topic>Flows in networks. Combinatorial problems</topic><topic>Heuristic</topic><topic>Heuristic methods</topic><topic>Integer programming</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Mathematical problems</topic><topic>Network design</topic><topic>Network topologies</topic><topic>Networks</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Operations research</topic><topic>Progressive hedging</topic><topic>Scenario clustering</topic><topic>Similarity</topic><topic>Stochastic models</topic><topic>Stochastic programs</topic><topic>Stochasticity</topic><topic>Strategy</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Crainic, Teodor Gabriel</creatorcontrib><creatorcontrib>Hewitt, Mike</creatorcontrib><creatorcontrib>Rei, Walter</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Crainic, Teodor Gabriel</au><au>Hewitt, Mike</au><au>Rei, Walter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scenario grouping in a progressive hedging-based meta-heuristic for stochastic network design</atitle><jtitle>Computers &amp; operations research</jtitle><date>2014-03-01</date><risdate>2014</risdate><volume>43</volume><spage>90</spage><epage>99</epage><pages>90-99</pages><issn>0305-0548</issn><eissn>1873-765X</eissn><eissn>0305-0548</eissn><coden>CMORAP</coden><abstract>We propose a methodological approach to build strategies for grouping scenarios as defined by the type of scenario decomposition, type of grouping, and the measures specifying scenario similarity. We evaluate these strategies in the context of stochastic network design by analyzing the behavior and performance of a new progressive hedging-based meta-heuristic for stochastic network design that solves subproblems comprising multiple scenarios. We compare the proposed strategies not only among themselves, but also against the strategy of grouping scenarios randomly and the lower bound provided by a state-of-the-art MIP solver. The results show that, by solving multi-scenario subproblems generated by the strategies we propose, the meta-heuristic produces better results in terms of solution quality and computing efficiency than when either single-scenario subproblems or multiple-scenario subproblems that are generated by picking scenarios at random are solved. The results also show that, considering all the strategies tested, the covering strategy with respect to commodity demands leads to the highest quality solutions and the quickest convergence.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.cor.2013.08.020</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0305-0548
ispartof Computers & operations research, 2014-03, Vol.43, p.90-99
issn 0305-0548
1873-765X
0305-0548
language eng
recordid cdi_proquest_miscellaneous_1677975454
source Elsevier ScienceDirect Journals
subjects Applied sciences
Commodities
Exact sciences and technology
Flows in networks. Combinatorial problems
Heuristic
Heuristic methods
Integer programming
Machine learning
Mathematical models
Mathematical problems
Network design
Network topologies
Networks
Operational research and scientific management
Operational research. Management science
Operations research
Progressive hedging
Scenario clustering
Similarity
Stochastic models
Stochastic programs
Stochasticity
Strategy
Studies
title Scenario grouping in a progressive hedging-based meta-heuristic for stochastic network design
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T22%3A32%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scenario%20grouping%20in%20a%20progressive%20hedging-based%20meta-heuristic%20for%20stochastic%20network%20design&rft.jtitle=Computers%20&%20operations%20research&rft.au=Crainic,%20Teodor%20Gabriel&rft.date=2014-03-01&rft.volume=43&rft.spage=90&rft.epage=99&rft.pages=90-99&rft.issn=0305-0548&rft.eissn=1873-765X&rft.coden=CMORAP&rft_id=info:doi/10.1016/j.cor.2013.08.020&rft_dat=%3Cproquest_cross%3E1530977657%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1469017827&rft_id=info:pmid/&rft_els_id=S0305054813002268&rfr_iscdi=true