Projective synchronization of fractional-order memristor-based neural networks
This paper investigates the projective synchronization of fractional-order memristor-based neural networks. Sufficient conditions are derived in the sense of Caputo’s fractional derivation and by combining a fractional-order differential inequality. Two numerical examples are given to show the effec...
Gespeichert in:
Veröffentlicht in: | Neural networks 2015-03, Vol.63, p.1-9 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | Neural networks |
container_volume | 63 |
creator | Bao, Hai-Bo Cao, Jin-De |
description | This paper investigates the projective synchronization of fractional-order memristor-based neural networks. Sufficient conditions are derived in the sense of Caputo’s fractional derivation and by combining a fractional-order differential inequality. Two numerical examples are given to show the effectiveness of the main results. The results in this paper extend and improve some previous works on the synchronization of fractional-order neural networks. |
doi_str_mv | 10.1016/j.neunet.2014.10.007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677971612</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S089360801400238X</els_id><sourcerecordid>1677971612</sourcerecordid><originalsourceid>FETCH-LOGICAL-c494t-7e36640f9fd05d39f1a055cc1ee881369bfd8fc613a75fc5e2b19a634352c00c3</originalsourceid><addsrcrecordid>eNqNkUtrGzEQgEVJaJy0_6CUPeayzmj1WOlSKCYvMEkO6VnI2hGVu7typXVC8usj47TH4NMMwzcP5iPkG4U5BSov1vMRtyNO8wYoL6U5QPuJzKhqdd20qjkiM1Ca1RIUnJDTnNcAIBVnn8lJI7hkTMOM3D2kuEY3hSes8svofqc4hlc7hThW0Vc-WbfLbV_H1GGqBhxSyFNM9cpm7KpyQ7J9CdNzTH_yF3LsbZ_x63s8I7-uLh8XN_Xy_vp28XNZO675VLfIpOTgte9AdEx7akEI5yiiUpRJvfKd8k5SZlvhncBmRbWVjDPROADHzsj5fu4mxb9bzJMZQnbY93bEuM2GyrbVLZW0OQRlTHHKxAGoaLgsb4SC8j3qUsw5oTebFAabXgwFs_Nj1mbvx-z87KrFT2n7_r5huxqw-9_0T0gBfuwBLN97CphMdgFHh11IRZPpYvh4wxukv6N2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1652460000</pqid></control><display><type>article</type><title>Projective synchronization of fractional-order memristor-based neural networks</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Bao, Hai-Bo ; Cao, Jin-De</creator><creatorcontrib>Bao, Hai-Bo ; Cao, Jin-De</creatorcontrib><description>This paper investigates the projective synchronization of fractional-order memristor-based neural networks. Sufficient conditions are derived in the sense of Caputo’s fractional derivation and by combining a fractional-order differential inequality. Two numerical examples are given to show the effectiveness of the main results. The results in this paper extend and improve some previous works on the synchronization of fractional-order neural networks.</description><identifier>ISSN: 0893-6080</identifier><identifier>EISSN: 1879-2782</identifier><identifier>DOI: 10.1016/j.neunet.2014.10.007</identifier><identifier>PMID: 25463390</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Algorithms ; Derivation ; Filippov’s solution ; Fractional-order ; Inequalities ; Information Storage and Retrieval - methods ; Mathematical models ; Memristor-based neural networks ; Neural networks ; Neural Networks (Computer) ; Projective synchronization ; Synchronism ; Synchronization</subject><ispartof>Neural networks, 2015-03, Vol.63, p.1-9</ispartof><rights>2014 Elsevier Ltd</rights><rights>Copyright © 2014 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c494t-7e36640f9fd05d39f1a055cc1ee881369bfd8fc613a75fc5e2b19a634352c00c3</citedby><cites>FETCH-LOGICAL-c494t-7e36640f9fd05d39f1a055cc1ee881369bfd8fc613a75fc5e2b19a634352c00c3</cites><orcidid>0000-0003-3133-7119</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neunet.2014.10.007$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25463390$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bao, Hai-Bo</creatorcontrib><creatorcontrib>Cao, Jin-De</creatorcontrib><title>Projective synchronization of fractional-order memristor-based neural networks</title><title>Neural networks</title><addtitle>Neural Netw</addtitle><description>This paper investigates the projective synchronization of fractional-order memristor-based neural networks. Sufficient conditions are derived in the sense of Caputo’s fractional derivation and by combining a fractional-order differential inequality. Two numerical examples are given to show the effectiveness of the main results. The results in this paper extend and improve some previous works on the synchronization of fractional-order neural networks.</description><subject>Algorithms</subject><subject>Derivation</subject><subject>Filippov’s solution</subject><subject>Fractional-order</subject><subject>Inequalities</subject><subject>Information Storage and Retrieval - methods</subject><subject>Mathematical models</subject><subject>Memristor-based neural networks</subject><subject>Neural networks</subject><subject>Neural Networks (Computer)</subject><subject>Projective synchronization</subject><subject>Synchronism</subject><subject>Synchronization</subject><issn>0893-6080</issn><issn>1879-2782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkUtrGzEQgEVJaJy0_6CUPeayzmj1WOlSKCYvMEkO6VnI2hGVu7typXVC8usj47TH4NMMwzcP5iPkG4U5BSov1vMRtyNO8wYoL6U5QPuJzKhqdd20qjkiM1Ca1RIUnJDTnNcAIBVnn8lJI7hkTMOM3D2kuEY3hSes8svofqc4hlc7hThW0Vc-WbfLbV_H1GGqBhxSyFNM9cpm7KpyQ7J9CdNzTH_yF3LsbZ_x63s8I7-uLh8XN_Xy_vp28XNZO675VLfIpOTgte9AdEx7akEI5yiiUpRJvfKd8k5SZlvhncBmRbWVjDPROADHzsj5fu4mxb9bzJMZQnbY93bEuM2GyrbVLZW0OQRlTHHKxAGoaLgsb4SC8j3qUsw5oTebFAabXgwFs_Nj1mbvx-z87KrFT2n7_r5huxqw-9_0T0gBfuwBLN97CphMdgFHh11IRZPpYvh4wxukv6N2</recordid><startdate>201503</startdate><enddate>201503</enddate><creator>Bao, Hai-Bo</creator><creator>Cao, Jin-De</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SC</scope><scope>7SP</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3133-7119</orcidid></search><sort><creationdate>201503</creationdate><title>Projective synchronization of fractional-order memristor-based neural networks</title><author>Bao, Hai-Bo ; Cao, Jin-De</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c494t-7e36640f9fd05d39f1a055cc1ee881369bfd8fc613a75fc5e2b19a634352c00c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Derivation</topic><topic>Filippov’s solution</topic><topic>Fractional-order</topic><topic>Inequalities</topic><topic>Information Storage and Retrieval - methods</topic><topic>Mathematical models</topic><topic>Memristor-based neural networks</topic><topic>Neural networks</topic><topic>Neural Networks (Computer)</topic><topic>Projective synchronization</topic><topic>Synchronism</topic><topic>Synchronization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bao, Hai-Bo</creatorcontrib><creatorcontrib>Cao, Jin-De</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bao, Hai-Bo</au><au>Cao, Jin-De</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Projective synchronization of fractional-order memristor-based neural networks</atitle><jtitle>Neural networks</jtitle><addtitle>Neural Netw</addtitle><date>2015-03</date><risdate>2015</risdate><volume>63</volume><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>0893-6080</issn><eissn>1879-2782</eissn><abstract>This paper investigates the projective synchronization of fractional-order memristor-based neural networks. Sufficient conditions are derived in the sense of Caputo’s fractional derivation and by combining a fractional-order differential inequality. Two numerical examples are given to show the effectiveness of the main results. The results in this paper extend and improve some previous works on the synchronization of fractional-order neural networks.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>25463390</pmid><doi>10.1016/j.neunet.2014.10.007</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3133-7119</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0893-6080 |
ispartof | Neural networks, 2015-03, Vol.63, p.1-9 |
issn | 0893-6080 1879-2782 |
language | eng |
recordid | cdi_proquest_miscellaneous_1677971612 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Algorithms Derivation Filippov’s solution Fractional-order Inequalities Information Storage and Retrieval - methods Mathematical models Memristor-based neural networks Neural networks Neural Networks (Computer) Projective synchronization Synchronism Synchronization |
title | Projective synchronization of fractional-order memristor-based neural networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T17%3A29%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Projective%20synchronization%20of%20fractional-order%20memristor-based%20neural%20networks&rft.jtitle=Neural%20networks&rft.au=Bao,%20Hai-Bo&rft.date=2015-03&rft.volume=63&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=0893-6080&rft.eissn=1879-2782&rft_id=info:doi/10.1016/j.neunet.2014.10.007&rft_dat=%3Cproquest_cross%3E1677971612%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1652460000&rft_id=info:pmid/25463390&rft_els_id=S089360801400238X&rfr_iscdi=true |