Projective synchronization of fractional-order memristor-based neural networks

This paper investigates the projective synchronization of fractional-order memristor-based neural networks. Sufficient conditions are derived in the sense of Caputo’s fractional derivation and by combining a fractional-order differential inequality. Two numerical examples are given to show the effec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural networks 2015-03, Vol.63, p.1-9
Hauptverfasser: Bao, Hai-Bo, Cao, Jin-De
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9
container_issue
container_start_page 1
container_title Neural networks
container_volume 63
creator Bao, Hai-Bo
Cao, Jin-De
description This paper investigates the projective synchronization of fractional-order memristor-based neural networks. Sufficient conditions are derived in the sense of Caputo’s fractional derivation and by combining a fractional-order differential inequality. Two numerical examples are given to show the effectiveness of the main results. The results in this paper extend and improve some previous works on the synchronization of fractional-order neural networks.
doi_str_mv 10.1016/j.neunet.2014.10.007
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677971612</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S089360801400238X</els_id><sourcerecordid>1677971612</sourcerecordid><originalsourceid>FETCH-LOGICAL-c494t-7e36640f9fd05d39f1a055cc1ee881369bfd8fc613a75fc5e2b19a634352c00c3</originalsourceid><addsrcrecordid>eNqNkUtrGzEQgEVJaJy0_6CUPeayzmj1WOlSKCYvMEkO6VnI2hGVu7typXVC8usj47TH4NMMwzcP5iPkG4U5BSov1vMRtyNO8wYoL6U5QPuJzKhqdd20qjkiM1Ca1RIUnJDTnNcAIBVnn8lJI7hkTMOM3D2kuEY3hSes8svofqc4hlc7hThW0Vc-WbfLbV_H1GGqBhxSyFNM9cpm7KpyQ7J9CdNzTH_yF3LsbZ_x63s8I7-uLh8XN_Xy_vp28XNZO675VLfIpOTgte9AdEx7akEI5yiiUpRJvfKd8k5SZlvhncBmRbWVjDPROADHzsj5fu4mxb9bzJMZQnbY93bEuM2GyrbVLZW0OQRlTHHKxAGoaLgsb4SC8j3qUsw5oTebFAabXgwFs_Nj1mbvx-z87KrFT2n7_r5huxqw-9_0T0gBfuwBLN97CphMdgFHh11IRZPpYvh4wxukv6N2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1652460000</pqid></control><display><type>article</type><title>Projective synchronization of fractional-order memristor-based neural networks</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Bao, Hai-Bo ; Cao, Jin-De</creator><creatorcontrib>Bao, Hai-Bo ; Cao, Jin-De</creatorcontrib><description>This paper investigates the projective synchronization of fractional-order memristor-based neural networks. Sufficient conditions are derived in the sense of Caputo’s fractional derivation and by combining a fractional-order differential inequality. Two numerical examples are given to show the effectiveness of the main results. The results in this paper extend and improve some previous works on the synchronization of fractional-order neural networks.</description><identifier>ISSN: 0893-6080</identifier><identifier>EISSN: 1879-2782</identifier><identifier>DOI: 10.1016/j.neunet.2014.10.007</identifier><identifier>PMID: 25463390</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Algorithms ; Derivation ; Filippov’s solution ; Fractional-order ; Inequalities ; Information Storage and Retrieval - methods ; Mathematical models ; Memristor-based neural networks ; Neural networks ; Neural Networks (Computer) ; Projective synchronization ; Synchronism ; Synchronization</subject><ispartof>Neural networks, 2015-03, Vol.63, p.1-9</ispartof><rights>2014 Elsevier Ltd</rights><rights>Copyright © 2014 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c494t-7e36640f9fd05d39f1a055cc1ee881369bfd8fc613a75fc5e2b19a634352c00c3</citedby><cites>FETCH-LOGICAL-c494t-7e36640f9fd05d39f1a055cc1ee881369bfd8fc613a75fc5e2b19a634352c00c3</cites><orcidid>0000-0003-3133-7119</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neunet.2014.10.007$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25463390$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bao, Hai-Bo</creatorcontrib><creatorcontrib>Cao, Jin-De</creatorcontrib><title>Projective synchronization of fractional-order memristor-based neural networks</title><title>Neural networks</title><addtitle>Neural Netw</addtitle><description>This paper investigates the projective synchronization of fractional-order memristor-based neural networks. Sufficient conditions are derived in the sense of Caputo’s fractional derivation and by combining a fractional-order differential inequality. Two numerical examples are given to show the effectiveness of the main results. The results in this paper extend and improve some previous works on the synchronization of fractional-order neural networks.</description><subject>Algorithms</subject><subject>Derivation</subject><subject>Filippov’s solution</subject><subject>Fractional-order</subject><subject>Inequalities</subject><subject>Information Storage and Retrieval - methods</subject><subject>Mathematical models</subject><subject>Memristor-based neural networks</subject><subject>Neural networks</subject><subject>Neural Networks (Computer)</subject><subject>Projective synchronization</subject><subject>Synchronism</subject><subject>Synchronization</subject><issn>0893-6080</issn><issn>1879-2782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkUtrGzEQgEVJaJy0_6CUPeayzmj1WOlSKCYvMEkO6VnI2hGVu7typXVC8usj47TH4NMMwzcP5iPkG4U5BSov1vMRtyNO8wYoL6U5QPuJzKhqdd20qjkiM1Ca1RIUnJDTnNcAIBVnn8lJI7hkTMOM3D2kuEY3hSes8svofqc4hlc7hThW0Vc-WbfLbV_H1GGqBhxSyFNM9cpm7KpyQ7J9CdNzTH_yF3LsbZ_x63s8I7-uLh8XN_Xy_vp28XNZO675VLfIpOTgte9AdEx7akEI5yiiUpRJvfKd8k5SZlvhncBmRbWVjDPROADHzsj5fu4mxb9bzJMZQnbY93bEuM2GyrbVLZW0OQRlTHHKxAGoaLgsb4SC8j3qUsw5oTebFAabXgwFs_Nj1mbvx-z87KrFT2n7_r5huxqw-9_0T0gBfuwBLN97CphMdgFHh11IRZPpYvh4wxukv6N2</recordid><startdate>201503</startdate><enddate>201503</enddate><creator>Bao, Hai-Bo</creator><creator>Cao, Jin-De</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SC</scope><scope>7SP</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3133-7119</orcidid></search><sort><creationdate>201503</creationdate><title>Projective synchronization of fractional-order memristor-based neural networks</title><author>Bao, Hai-Bo ; Cao, Jin-De</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c494t-7e36640f9fd05d39f1a055cc1ee881369bfd8fc613a75fc5e2b19a634352c00c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Derivation</topic><topic>Filippov’s solution</topic><topic>Fractional-order</topic><topic>Inequalities</topic><topic>Information Storage and Retrieval - methods</topic><topic>Mathematical models</topic><topic>Memristor-based neural networks</topic><topic>Neural networks</topic><topic>Neural Networks (Computer)</topic><topic>Projective synchronization</topic><topic>Synchronism</topic><topic>Synchronization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bao, Hai-Bo</creatorcontrib><creatorcontrib>Cao, Jin-De</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bao, Hai-Bo</au><au>Cao, Jin-De</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Projective synchronization of fractional-order memristor-based neural networks</atitle><jtitle>Neural networks</jtitle><addtitle>Neural Netw</addtitle><date>2015-03</date><risdate>2015</risdate><volume>63</volume><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>0893-6080</issn><eissn>1879-2782</eissn><abstract>This paper investigates the projective synchronization of fractional-order memristor-based neural networks. Sufficient conditions are derived in the sense of Caputo’s fractional derivation and by combining a fractional-order differential inequality. Two numerical examples are given to show the effectiveness of the main results. The results in this paper extend and improve some previous works on the synchronization of fractional-order neural networks.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>25463390</pmid><doi>10.1016/j.neunet.2014.10.007</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3133-7119</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0893-6080
ispartof Neural networks, 2015-03, Vol.63, p.1-9
issn 0893-6080
1879-2782
language eng
recordid cdi_proquest_miscellaneous_1677971612
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Algorithms
Derivation
Filippov’s solution
Fractional-order
Inequalities
Information Storage and Retrieval - methods
Mathematical models
Memristor-based neural networks
Neural networks
Neural Networks (Computer)
Projective synchronization
Synchronism
Synchronization
title Projective synchronization of fractional-order memristor-based neural networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T17%3A29%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Projective%20synchronization%20of%20fractional-order%20memristor-based%20neural%20networks&rft.jtitle=Neural%20networks&rft.au=Bao,%20Hai-Bo&rft.date=2015-03&rft.volume=63&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=0893-6080&rft.eissn=1879-2782&rft_id=info:doi/10.1016/j.neunet.2014.10.007&rft_dat=%3Cproquest_cross%3E1677971612%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1652460000&rft_id=info:pmid/25463390&rft_els_id=S089360801400238X&rfr_iscdi=true