Optimisation of the link volume for weakest link failure prediction in NBG-18 nuclear graphite

This paper describes the process for approximating the optimal size of a link volume required for weakest link failure calculation in nuclear graphite, with NBG-18 used as an example. As part of the failure methodology, the link volume is defined in terms of two grouping criteria. The first criterio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nuclear engineering and design 2014-07, Vol.274, p.10-19
Hauptverfasser: Hindley, Michael P., Groenwold, Albert A., Blaine, Deborah C., Becker, Thorsten H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19
container_issue
container_start_page 10
container_title Nuclear engineering and design
container_volume 274
creator Hindley, Michael P.
Groenwold, Albert A.
Blaine, Deborah C.
Becker, Thorsten H.
description This paper describes the process for approximating the optimal size of a link volume required for weakest link failure calculation in nuclear graphite, with NBG-18 used as an example. As part of the failure methodology, the link volume is defined in terms of two grouping criteria. The first criterion is a factor of the maximum grain size and the second criterion is a function of an equivalent stress limit. A methodology for approximating these grouping criteria is presented. The failure methodology employs finite element analysis (FEA) in order to predict the failure load, at 50% probability of failure. The average experimental failure load, as determined for 26 test geometries, is used to evaluate the accuracy of the weakest link failure calculations. The influence of the two grouping criteria on the failure load prediction is evaluated by defining an error in prediction across all test cases. Mathematical optimisation is used to find the minimum error across a range of test case failure predictions. This minimum error is shown to deliver the most accurate failure prediction across a whole range of components, although some test cases in the range predict conservative failure load. The mathematical optimisation objective function is penalised to account for non-conservative prediction of the failure load for any test case. The optimisation is repeated and a link volume found for conservative failure prediction. The failure prediction for each test case is evaluated, in detail, for the proposed link volumes. Based on the analysis, link design volumes for NBG-18 are recommended for either accurate or conservative failure prediction.
doi_str_mv 10.1016/j.nucengdes.2014.04.003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677971052</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0029549314001897</els_id><sourcerecordid>1677971052</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-7abed0613d80bb3f50b61168c0e396d95a897ab605bb5a07935c675978296ae83</originalsourceid><addsrcrecordid>eNqFkE9LxDAQxYMouK5-BnP00nXSmKQ5rov_QPSi4MmQplM3u922Jq3itzfrileHgYHw3mTej5BTBjMGTJ6vZu3osH2rMM5yYBczSA18j0xYofJMCf2yTyYAuc7EheaH5CjGFWxL5xPy-tgPfuOjHXzX0q6mwxJp49s1_eiacYO07gL9RLvGOOzea-ubMSDtA1be_dh8Sx8ubzJW0HRKgzbQt2D7pR_wmBzUtol48jun5Pn66mlxm90_3twt5veZ4wUbMmVLrEAyXhVQlrwWUErGZOEAuZaVFrbQSSNBlKWwoDQXTqZkqsi1tFjwKTnb7e1D9z6mW03K5LBpbIvdGA2TSmnFQOT_S4VUkL5LrKZE7aQudDEGrE0f_MaGL8PAbOGblfmDb7bwDaQGnpzznRNT6A-PwUTnsXUJWUA3mKrz_-74BmrwkWU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1567089749</pqid></control><display><type>article</type><title>Optimisation of the link volume for weakest link failure prediction in NBG-18 nuclear graphite</title><source>Access via ScienceDirect (Elsevier)</source><creator>Hindley, Michael P. ; Groenwold, Albert A. ; Blaine, Deborah C. ; Becker, Thorsten H.</creator><creatorcontrib>Hindley, Michael P. ; Groenwold, Albert A. ; Blaine, Deborah C. ; Becker, Thorsten H.</creatorcontrib><description>This paper describes the process for approximating the optimal size of a link volume required for weakest link failure calculation in nuclear graphite, with NBG-18 used as an example. As part of the failure methodology, the link volume is defined in terms of two grouping criteria. The first criterion is a factor of the maximum grain size and the second criterion is a function of an equivalent stress limit. A methodology for approximating these grouping criteria is presented. The failure methodology employs finite element analysis (FEA) in order to predict the failure load, at 50% probability of failure. The average experimental failure load, as determined for 26 test geometries, is used to evaluate the accuracy of the weakest link failure calculations. The influence of the two grouping criteria on the failure load prediction is evaluated by defining an error in prediction across all test cases. Mathematical optimisation is used to find the minimum error across a range of test case failure predictions. This minimum error is shown to deliver the most accurate failure prediction across a whole range of components, although some test cases in the range predict conservative failure load. The mathematical optimisation objective function is penalised to account for non-conservative prediction of the failure load for any test case. The optimisation is repeated and a link volume found for conservative failure prediction. The failure prediction for each test case is evaluated, in detail, for the proposed link volumes. Based on the analysis, link design volumes for NBG-18 are recommended for either accurate or conservative failure prediction.</description><identifier>ISSN: 0029-5493</identifier><identifier>EISSN: 1872-759X</identifier><identifier>DOI: 10.1016/j.nucengdes.2014.04.003</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Criteria ; Errors ; Failure ; Failure analysis ; Failure prediction ; Links ; Mathematical analysis ; Methodology ; NBG-18 ; Nuclear graphite ; Optimization</subject><ispartof>Nuclear engineering and design, 2014-07, Vol.274, p.10-19</ispartof><rights>2014 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-7abed0613d80bb3f50b61168c0e396d95a897ab605bb5a07935c675978296ae83</citedby><cites>FETCH-LOGICAL-c381t-7abed0613d80bb3f50b61168c0e396d95a897ab605bb5a07935c675978296ae83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.nucengdes.2014.04.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Hindley, Michael P.</creatorcontrib><creatorcontrib>Groenwold, Albert A.</creatorcontrib><creatorcontrib>Blaine, Deborah C.</creatorcontrib><creatorcontrib>Becker, Thorsten H.</creatorcontrib><title>Optimisation of the link volume for weakest link failure prediction in NBG-18 nuclear graphite</title><title>Nuclear engineering and design</title><description>This paper describes the process for approximating the optimal size of a link volume required for weakest link failure calculation in nuclear graphite, with NBG-18 used as an example. As part of the failure methodology, the link volume is defined in terms of two grouping criteria. The first criterion is a factor of the maximum grain size and the second criterion is a function of an equivalent stress limit. A methodology for approximating these grouping criteria is presented. The failure methodology employs finite element analysis (FEA) in order to predict the failure load, at 50% probability of failure. The average experimental failure load, as determined for 26 test geometries, is used to evaluate the accuracy of the weakest link failure calculations. The influence of the two grouping criteria on the failure load prediction is evaluated by defining an error in prediction across all test cases. Mathematical optimisation is used to find the minimum error across a range of test case failure predictions. This minimum error is shown to deliver the most accurate failure prediction across a whole range of components, although some test cases in the range predict conservative failure load. The mathematical optimisation objective function is penalised to account for non-conservative prediction of the failure load for any test case. The optimisation is repeated and a link volume found for conservative failure prediction. The failure prediction for each test case is evaluated, in detail, for the proposed link volumes. Based on the analysis, link design volumes for NBG-18 are recommended for either accurate or conservative failure prediction.</description><subject>Criteria</subject><subject>Errors</subject><subject>Failure</subject><subject>Failure analysis</subject><subject>Failure prediction</subject><subject>Links</subject><subject>Mathematical analysis</subject><subject>Methodology</subject><subject>NBG-18</subject><subject>Nuclear graphite</subject><subject>Optimization</subject><issn>0029-5493</issn><issn>1872-759X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LxDAQxYMouK5-BnP00nXSmKQ5rov_QPSi4MmQplM3u922Jq3itzfrileHgYHw3mTej5BTBjMGTJ6vZu3osH2rMM5yYBczSA18j0xYofJMCf2yTyYAuc7EheaH5CjGFWxL5xPy-tgPfuOjHXzX0q6mwxJp49s1_eiacYO07gL9RLvGOOzea-ubMSDtA1be_dh8Sx8ubzJW0HRKgzbQt2D7pR_wmBzUtol48jun5Pn66mlxm90_3twt5veZ4wUbMmVLrEAyXhVQlrwWUErGZOEAuZaVFrbQSSNBlKWwoDQXTqZkqsi1tFjwKTnb7e1D9z6mW03K5LBpbIvdGA2TSmnFQOT_S4VUkL5LrKZE7aQudDEGrE0f_MaGL8PAbOGblfmDb7bwDaQGnpzznRNT6A-PwUTnsXUJWUA3mKrz_-74BmrwkWU</recordid><startdate>20140715</startdate><enddate>20140715</enddate><creator>Hindley, Michael P.</creator><creator>Groenwold, Albert A.</creator><creator>Blaine, Deborah C.</creator><creator>Becker, Thorsten H.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20140715</creationdate><title>Optimisation of the link volume for weakest link failure prediction in NBG-18 nuclear graphite</title><author>Hindley, Michael P. ; Groenwold, Albert A. ; Blaine, Deborah C. ; Becker, Thorsten H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-7abed0613d80bb3f50b61168c0e396d95a897ab605bb5a07935c675978296ae83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Criteria</topic><topic>Errors</topic><topic>Failure</topic><topic>Failure analysis</topic><topic>Failure prediction</topic><topic>Links</topic><topic>Mathematical analysis</topic><topic>Methodology</topic><topic>NBG-18</topic><topic>Nuclear graphite</topic><topic>Optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hindley, Michael P.</creatorcontrib><creatorcontrib>Groenwold, Albert A.</creatorcontrib><creatorcontrib>Blaine, Deborah C.</creatorcontrib><creatorcontrib>Becker, Thorsten H.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nuclear engineering and design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hindley, Michael P.</au><au>Groenwold, Albert A.</au><au>Blaine, Deborah C.</au><au>Becker, Thorsten H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimisation of the link volume for weakest link failure prediction in NBG-18 nuclear graphite</atitle><jtitle>Nuclear engineering and design</jtitle><date>2014-07-15</date><risdate>2014</risdate><volume>274</volume><spage>10</spage><epage>19</epage><pages>10-19</pages><issn>0029-5493</issn><eissn>1872-759X</eissn><abstract>This paper describes the process for approximating the optimal size of a link volume required for weakest link failure calculation in nuclear graphite, with NBG-18 used as an example. As part of the failure methodology, the link volume is defined in terms of two grouping criteria. The first criterion is a factor of the maximum grain size and the second criterion is a function of an equivalent stress limit. A methodology for approximating these grouping criteria is presented. The failure methodology employs finite element analysis (FEA) in order to predict the failure load, at 50% probability of failure. The average experimental failure load, as determined for 26 test geometries, is used to evaluate the accuracy of the weakest link failure calculations. The influence of the two grouping criteria on the failure load prediction is evaluated by defining an error in prediction across all test cases. Mathematical optimisation is used to find the minimum error across a range of test case failure predictions. This minimum error is shown to deliver the most accurate failure prediction across a whole range of components, although some test cases in the range predict conservative failure load. The mathematical optimisation objective function is penalised to account for non-conservative prediction of the failure load for any test case. The optimisation is repeated and a link volume found for conservative failure prediction. The failure prediction for each test case is evaluated, in detail, for the proposed link volumes. Based on the analysis, link design volumes for NBG-18 are recommended for either accurate or conservative failure prediction.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.nucengdes.2014.04.003</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0029-5493
ispartof Nuclear engineering and design, 2014-07, Vol.274, p.10-19
issn 0029-5493
1872-759X
language eng
recordid cdi_proquest_miscellaneous_1677971052
source Access via ScienceDirect (Elsevier)
subjects Criteria
Errors
Failure
Failure analysis
Failure prediction
Links
Mathematical analysis
Methodology
NBG-18
Nuclear graphite
Optimization
title Optimisation of the link volume for weakest link failure prediction in NBG-18 nuclear graphite
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T15%3A24%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimisation%20of%20the%20link%20volume%20for%20weakest%20link%20failure%20prediction%20in%20NBG-18%20nuclear%20graphite&rft.jtitle=Nuclear%20engineering%20and%20design&rft.au=Hindley,%20Michael%20P.&rft.date=2014-07-15&rft.volume=274&rft.spage=10&rft.epage=19&rft.pages=10-19&rft.issn=0029-5493&rft.eissn=1872-759X&rft_id=info:doi/10.1016/j.nucengdes.2014.04.003&rft_dat=%3Cproquest_cross%3E1677971052%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1567089749&rft_id=info:pmid/&rft_els_id=S0029549314001897&rfr_iscdi=true