Optimisation of the link volume for weakest link failure prediction in NBG-18 nuclear graphite
This paper describes the process for approximating the optimal size of a link volume required for weakest link failure calculation in nuclear graphite, with NBG-18 used as an example. As part of the failure methodology, the link volume is defined in terms of two grouping criteria. The first criterio...
Gespeichert in:
Veröffentlicht in: | Nuclear engineering and design 2014-07, Vol.274, p.10-19 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 19 |
---|---|
container_issue | |
container_start_page | 10 |
container_title | Nuclear engineering and design |
container_volume | 274 |
creator | Hindley, Michael P. Groenwold, Albert A. Blaine, Deborah C. Becker, Thorsten H. |
description | This paper describes the process for approximating the optimal size of a link volume required for weakest link failure calculation in nuclear graphite, with NBG-18 used as an example. As part of the failure methodology, the link volume is defined in terms of two grouping criteria. The first criterion is a factor of the maximum grain size and the second criterion is a function of an equivalent stress limit. A methodology for approximating these grouping criteria is presented. The failure methodology employs finite element analysis (FEA) in order to predict the failure load, at 50% probability of failure. The average experimental failure load, as determined for 26 test geometries, is used to evaluate the accuracy of the weakest link failure calculations. The influence of the two grouping criteria on the failure load prediction is evaluated by defining an error in prediction across all test cases. Mathematical optimisation is used to find the minimum error across a range of test case failure predictions. This minimum error is shown to deliver the most accurate failure prediction across a whole range of components, although some test cases in the range predict conservative failure load. The mathematical optimisation objective function is penalised to account for non-conservative prediction of the failure load for any test case. The optimisation is repeated and a link volume found for conservative failure prediction. The failure prediction for each test case is evaluated, in detail, for the proposed link volumes. Based on the analysis, link design volumes for NBG-18 are recommended for either accurate or conservative failure prediction. |
doi_str_mv | 10.1016/j.nucengdes.2014.04.003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677971052</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0029549314001897</els_id><sourcerecordid>1677971052</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-7abed0613d80bb3f50b61168c0e396d95a897ab605bb5a07935c675978296ae83</originalsourceid><addsrcrecordid>eNqFkE9LxDAQxYMouK5-BnP00nXSmKQ5rov_QPSi4MmQplM3u922Jq3itzfrileHgYHw3mTej5BTBjMGTJ6vZu3osH2rMM5yYBczSA18j0xYofJMCf2yTyYAuc7EheaH5CjGFWxL5xPy-tgPfuOjHXzX0q6mwxJp49s1_eiacYO07gL9RLvGOOzea-ubMSDtA1be_dh8Sx8ubzJW0HRKgzbQt2D7pR_wmBzUtol48jun5Pn66mlxm90_3twt5veZ4wUbMmVLrEAyXhVQlrwWUErGZOEAuZaVFrbQSSNBlKWwoDQXTqZkqsi1tFjwKTnb7e1D9z6mW03K5LBpbIvdGA2TSmnFQOT_S4VUkL5LrKZE7aQudDEGrE0f_MaGL8PAbOGblfmDb7bwDaQGnpzznRNT6A-PwUTnsXUJWUA3mKrz_-74BmrwkWU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1567089749</pqid></control><display><type>article</type><title>Optimisation of the link volume for weakest link failure prediction in NBG-18 nuclear graphite</title><source>Access via ScienceDirect (Elsevier)</source><creator>Hindley, Michael P. ; Groenwold, Albert A. ; Blaine, Deborah C. ; Becker, Thorsten H.</creator><creatorcontrib>Hindley, Michael P. ; Groenwold, Albert A. ; Blaine, Deborah C. ; Becker, Thorsten H.</creatorcontrib><description>This paper describes the process for approximating the optimal size of a link volume required for weakest link failure calculation in nuclear graphite, with NBG-18 used as an example. As part of the failure methodology, the link volume is defined in terms of two grouping criteria. The first criterion is a factor of the maximum grain size and the second criterion is a function of an equivalent stress limit. A methodology for approximating these grouping criteria is presented. The failure methodology employs finite element analysis (FEA) in order to predict the failure load, at 50% probability of failure. The average experimental failure load, as determined for 26 test geometries, is used to evaluate the accuracy of the weakest link failure calculations. The influence of the two grouping criteria on the failure load prediction is evaluated by defining an error in prediction across all test cases. Mathematical optimisation is used to find the minimum error across a range of test case failure predictions. This minimum error is shown to deliver the most accurate failure prediction across a whole range of components, although some test cases in the range predict conservative failure load. The mathematical optimisation objective function is penalised to account for non-conservative prediction of the failure load for any test case. The optimisation is repeated and a link volume found for conservative failure prediction. The failure prediction for each test case is evaluated, in detail, for the proposed link volumes. Based on the analysis, link design volumes for NBG-18 are recommended for either accurate or conservative failure prediction.</description><identifier>ISSN: 0029-5493</identifier><identifier>EISSN: 1872-759X</identifier><identifier>DOI: 10.1016/j.nucengdes.2014.04.003</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Criteria ; Errors ; Failure ; Failure analysis ; Failure prediction ; Links ; Mathematical analysis ; Methodology ; NBG-18 ; Nuclear graphite ; Optimization</subject><ispartof>Nuclear engineering and design, 2014-07, Vol.274, p.10-19</ispartof><rights>2014 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-7abed0613d80bb3f50b61168c0e396d95a897ab605bb5a07935c675978296ae83</citedby><cites>FETCH-LOGICAL-c381t-7abed0613d80bb3f50b61168c0e396d95a897ab605bb5a07935c675978296ae83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.nucengdes.2014.04.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Hindley, Michael P.</creatorcontrib><creatorcontrib>Groenwold, Albert A.</creatorcontrib><creatorcontrib>Blaine, Deborah C.</creatorcontrib><creatorcontrib>Becker, Thorsten H.</creatorcontrib><title>Optimisation of the link volume for weakest link failure prediction in NBG-18 nuclear graphite</title><title>Nuclear engineering and design</title><description>This paper describes the process for approximating the optimal size of a link volume required for weakest link failure calculation in nuclear graphite, with NBG-18 used as an example. As part of the failure methodology, the link volume is defined in terms of two grouping criteria. The first criterion is a factor of the maximum grain size and the second criterion is a function of an equivalent stress limit. A methodology for approximating these grouping criteria is presented. The failure methodology employs finite element analysis (FEA) in order to predict the failure load, at 50% probability of failure. The average experimental failure load, as determined for 26 test geometries, is used to evaluate the accuracy of the weakest link failure calculations. The influence of the two grouping criteria on the failure load prediction is evaluated by defining an error in prediction across all test cases. Mathematical optimisation is used to find the minimum error across a range of test case failure predictions. This minimum error is shown to deliver the most accurate failure prediction across a whole range of components, although some test cases in the range predict conservative failure load. The mathematical optimisation objective function is penalised to account for non-conservative prediction of the failure load for any test case. The optimisation is repeated and a link volume found for conservative failure prediction. The failure prediction for each test case is evaluated, in detail, for the proposed link volumes. Based on the analysis, link design volumes for NBG-18 are recommended for either accurate or conservative failure prediction.</description><subject>Criteria</subject><subject>Errors</subject><subject>Failure</subject><subject>Failure analysis</subject><subject>Failure prediction</subject><subject>Links</subject><subject>Mathematical analysis</subject><subject>Methodology</subject><subject>NBG-18</subject><subject>Nuclear graphite</subject><subject>Optimization</subject><issn>0029-5493</issn><issn>1872-759X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LxDAQxYMouK5-BnP00nXSmKQ5rov_QPSi4MmQplM3u922Jq3itzfrileHgYHw3mTej5BTBjMGTJ6vZu3osH2rMM5yYBczSA18j0xYofJMCf2yTyYAuc7EheaH5CjGFWxL5xPy-tgPfuOjHXzX0q6mwxJp49s1_eiacYO07gL9RLvGOOzea-ubMSDtA1be_dh8Sx8ubzJW0HRKgzbQt2D7pR_wmBzUtol48jun5Pn66mlxm90_3twt5veZ4wUbMmVLrEAyXhVQlrwWUErGZOEAuZaVFrbQSSNBlKWwoDQXTqZkqsi1tFjwKTnb7e1D9z6mW03K5LBpbIvdGA2TSmnFQOT_S4VUkL5LrKZE7aQudDEGrE0f_MaGL8PAbOGblfmDb7bwDaQGnpzznRNT6A-PwUTnsXUJWUA3mKrz_-74BmrwkWU</recordid><startdate>20140715</startdate><enddate>20140715</enddate><creator>Hindley, Michael P.</creator><creator>Groenwold, Albert A.</creator><creator>Blaine, Deborah C.</creator><creator>Becker, Thorsten H.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20140715</creationdate><title>Optimisation of the link volume for weakest link failure prediction in NBG-18 nuclear graphite</title><author>Hindley, Michael P. ; Groenwold, Albert A. ; Blaine, Deborah C. ; Becker, Thorsten H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-7abed0613d80bb3f50b61168c0e396d95a897ab605bb5a07935c675978296ae83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Criteria</topic><topic>Errors</topic><topic>Failure</topic><topic>Failure analysis</topic><topic>Failure prediction</topic><topic>Links</topic><topic>Mathematical analysis</topic><topic>Methodology</topic><topic>NBG-18</topic><topic>Nuclear graphite</topic><topic>Optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hindley, Michael P.</creatorcontrib><creatorcontrib>Groenwold, Albert A.</creatorcontrib><creatorcontrib>Blaine, Deborah C.</creatorcontrib><creatorcontrib>Becker, Thorsten H.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nuclear engineering and design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hindley, Michael P.</au><au>Groenwold, Albert A.</au><au>Blaine, Deborah C.</au><au>Becker, Thorsten H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimisation of the link volume for weakest link failure prediction in NBG-18 nuclear graphite</atitle><jtitle>Nuclear engineering and design</jtitle><date>2014-07-15</date><risdate>2014</risdate><volume>274</volume><spage>10</spage><epage>19</epage><pages>10-19</pages><issn>0029-5493</issn><eissn>1872-759X</eissn><abstract>This paper describes the process for approximating the optimal size of a link volume required for weakest link failure calculation in nuclear graphite, with NBG-18 used as an example. As part of the failure methodology, the link volume is defined in terms of two grouping criteria. The first criterion is a factor of the maximum grain size and the second criterion is a function of an equivalent stress limit. A methodology for approximating these grouping criteria is presented. The failure methodology employs finite element analysis (FEA) in order to predict the failure load, at 50% probability of failure. The average experimental failure load, as determined for 26 test geometries, is used to evaluate the accuracy of the weakest link failure calculations. The influence of the two grouping criteria on the failure load prediction is evaluated by defining an error in prediction across all test cases. Mathematical optimisation is used to find the minimum error across a range of test case failure predictions. This minimum error is shown to deliver the most accurate failure prediction across a whole range of components, although some test cases in the range predict conservative failure load. The mathematical optimisation objective function is penalised to account for non-conservative prediction of the failure load for any test case. The optimisation is repeated and a link volume found for conservative failure prediction. The failure prediction for each test case is evaluated, in detail, for the proposed link volumes. Based on the analysis, link design volumes for NBG-18 are recommended for either accurate or conservative failure prediction.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.nucengdes.2014.04.003</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0029-5493 |
ispartof | Nuclear engineering and design, 2014-07, Vol.274, p.10-19 |
issn | 0029-5493 1872-759X |
language | eng |
recordid | cdi_proquest_miscellaneous_1677971052 |
source | Access via ScienceDirect (Elsevier) |
subjects | Criteria Errors Failure Failure analysis Failure prediction Links Mathematical analysis Methodology NBG-18 Nuclear graphite Optimization |
title | Optimisation of the link volume for weakest link failure prediction in NBG-18 nuclear graphite |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T15%3A24%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimisation%20of%20the%20link%20volume%20for%20weakest%20link%20failure%20prediction%20in%20NBG-18%20nuclear%20graphite&rft.jtitle=Nuclear%20engineering%20and%20design&rft.au=Hindley,%20Michael%20P.&rft.date=2014-07-15&rft.volume=274&rft.spage=10&rft.epage=19&rft.pages=10-19&rft.issn=0029-5493&rft.eissn=1872-759X&rft_id=info:doi/10.1016/j.nucengdes.2014.04.003&rft_dat=%3Cproquest_cross%3E1677971052%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1567089749&rft_id=info:pmid/&rft_els_id=S0029549314001897&rfr_iscdi=true |