Extreme Learning Machine for the Classification of Rainfall and Thunderstorm

Forecasting rainfall and thunderstorm is one of the important requirements for planning and management of many applications, including, agriculture, flood and traffic. Considering the relevance and importance of the study, this research study aims at classification of rainfall and thunderstorm. Ther...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied sciences (Asian Network for Scientific Information) 2015, Vol.15 (1), p.153-153
Hauptverfasser: Sreekanth, M S, Rajesh, R, Satheeshkumar, J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 153
container_issue 1
container_start_page 153
container_title Journal of applied sciences (Asian Network for Scientific Information)
container_volume 15
creator Sreekanth, M S
Rajesh, R
Satheeshkumar, J
description Forecasting rainfall and thunderstorm is one of the important requirements for planning and management of many applications, including, agriculture, flood and traffic. Considering the relevance and importance of the study, this research study aims at classification of rainfall and thunderstorm. There are various classifiers available but not limited to, Support Vector Machine (SVM), Artificial Neural Network (ANN), K-Nearest Neighbourhood classier (KNN), Adaboost, etc. Recently Dr. G.B. Huang suggested and proposed an efficient classifier based on single layer feedforward Neural Network called as Extreme Learning Machine (ELM) which is extremely powerful to be an Universal classifier. Hence, this study focuses on the classification of rainfall and thunderstorm. The results of the classification using ELM show a classification accuracy of 87.69% which is much better when compared to the results of other classifiers, namely, SVM and ANN. Hence, ELM can be considered as a good classifier for the classification of rainfall and thunderstorm.
doi_str_mv 10.3923/jas.2015.153.156
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677970674</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1660414128</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2666-2c755ebcd1b833b7f1ddef36d170cf7f4f394b2960751fb0e2b208ba76f9b60c3</originalsourceid><addsrcrecordid>eNqNkM9LwzAYhoMoOKd3jzl66cyvfmmPMqYTKoLMc0jSxGW06Uw60P_ejolnDy_fy8fDe3gQuqVkwWvG73c6Lxih5YKWfAqcoRmtKCtKAHb-10txia5y3hEiONRyhprV15hc73DjdIohfuAXbbchOuyHhMetw8tO5xx8sHoMQ8SDx286RK-7DuvY4s32EFuX8jik_hpdTP_sbn7vHL0_rjbLddG8Pj0vH5rCMgAomJVl6Yxtqak4N9LTtnWeQ0slsV564XktDKuByJJ6QxwzjFRGS_C1AWL5HN2ddvdp-Dy4PKo-ZOu6Tkc3HLKiIGUtCUjxDxSIoIKyakLJCbVpyDk5r_Yp9Dp9K0rU0bGaHKujYzU5ngL8BxeVb4c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1660414128</pqid></control><display><type>article</type><title>Extreme Learning Machine for the Classification of Rainfall and Thunderstorm</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Science Alert</source><creator>Sreekanth, M S ; Rajesh, R ; Satheeshkumar, J</creator><creatorcontrib>Sreekanth, M S ; Rajesh, R ; Satheeshkumar, J</creatorcontrib><description>Forecasting rainfall and thunderstorm is one of the important requirements for planning and management of many applications, including, agriculture, flood and traffic. Considering the relevance and importance of the study, this research study aims at classification of rainfall and thunderstorm. There are various classifiers available but not limited to, Support Vector Machine (SVM), Artificial Neural Network (ANN), K-Nearest Neighbourhood classier (KNN), Adaboost, etc. Recently Dr. G.B. Huang suggested and proposed an efficient classifier based on single layer feedforward Neural Network called as Extreme Learning Machine (ELM) which is extremely powerful to be an Universal classifier. Hence, this study focuses on the classification of rainfall and thunderstorm. The results of the classification using ELM show a classification accuracy of 87.69% which is much better when compared to the results of other classifiers, namely, SVM and ANN. Hence, ELM can be considered as a good classifier for the classification of rainfall and thunderstorm.</description><identifier>ISSN: 1812-5654</identifier><identifier>EISSN: 1812-5662</identifier><identifier>DOI: 10.3923/jas.2015.153.156</identifier><language>eng</language><subject>Classification ; Classifiers ; Learning theory ; Neural networks ; Rainfall ; Support vector machines ; Thunderstorms</subject><ispartof>Journal of applied sciences (Asian Network for Scientific Information), 2015, Vol.15 (1), p.153-153</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2666-2c755ebcd1b833b7f1ddef36d170cf7f4f394b2960751fb0e2b208ba76f9b60c3</citedby><cites>FETCH-LOGICAL-c2666-2c755ebcd1b833b7f1ddef36d170cf7f4f394b2960751fb0e2b208ba76f9b60c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,4124,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Sreekanth, M S</creatorcontrib><creatorcontrib>Rajesh, R</creatorcontrib><creatorcontrib>Satheeshkumar, J</creatorcontrib><title>Extreme Learning Machine for the Classification of Rainfall and Thunderstorm</title><title>Journal of applied sciences (Asian Network for Scientific Information)</title><description>Forecasting rainfall and thunderstorm is one of the important requirements for planning and management of many applications, including, agriculture, flood and traffic. Considering the relevance and importance of the study, this research study aims at classification of rainfall and thunderstorm. There are various classifiers available but not limited to, Support Vector Machine (SVM), Artificial Neural Network (ANN), K-Nearest Neighbourhood classier (KNN), Adaboost, etc. Recently Dr. G.B. Huang suggested and proposed an efficient classifier based on single layer feedforward Neural Network called as Extreme Learning Machine (ELM) which is extremely powerful to be an Universal classifier. Hence, this study focuses on the classification of rainfall and thunderstorm. The results of the classification using ELM show a classification accuracy of 87.69% which is much better when compared to the results of other classifiers, namely, SVM and ANN. Hence, ELM can be considered as a good classifier for the classification of rainfall and thunderstorm.</description><subject>Classification</subject><subject>Classifiers</subject><subject>Learning theory</subject><subject>Neural networks</subject><subject>Rainfall</subject><subject>Support vector machines</subject><subject>Thunderstorms</subject><issn>1812-5654</issn><issn>1812-5662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkM9LwzAYhoMoOKd3jzl66cyvfmmPMqYTKoLMc0jSxGW06Uw60P_ejolnDy_fy8fDe3gQuqVkwWvG73c6Lxih5YKWfAqcoRmtKCtKAHb-10txia5y3hEiONRyhprV15hc73DjdIohfuAXbbchOuyHhMetw8tO5xx8sHoMQ8SDx286RK-7DuvY4s32EFuX8jik_hpdTP_sbn7vHL0_rjbLddG8Pj0vH5rCMgAomJVl6Yxtqak4N9LTtnWeQ0slsV564XktDKuByJJ6QxwzjFRGS_C1AWL5HN2ddvdp-Dy4PKo-ZOu6Tkc3HLKiIGUtCUjxDxSIoIKyakLJCbVpyDk5r_Yp9Dp9K0rU0bGaHKujYzU5ngL8BxeVb4c</recordid><startdate>2015</startdate><enddate>2015</enddate><creator>Sreekanth, M S</creator><creator>Rajesh, R</creator><creator>Satheeshkumar, J</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2015</creationdate><title>Extreme Learning Machine for the Classification of Rainfall and Thunderstorm</title><author>Sreekanth, M S ; Rajesh, R ; Satheeshkumar, J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2666-2c755ebcd1b833b7f1ddef36d170cf7f4f394b2960751fb0e2b208ba76f9b60c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Classification</topic><topic>Classifiers</topic><topic>Learning theory</topic><topic>Neural networks</topic><topic>Rainfall</topic><topic>Support vector machines</topic><topic>Thunderstorms</topic><toplevel>online_resources</toplevel><creatorcontrib>Sreekanth, M S</creatorcontrib><creatorcontrib>Rajesh, R</creatorcontrib><creatorcontrib>Satheeshkumar, J</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of applied sciences (Asian Network for Scientific Information)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sreekanth, M S</au><au>Rajesh, R</au><au>Satheeshkumar, J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extreme Learning Machine for the Classification of Rainfall and Thunderstorm</atitle><jtitle>Journal of applied sciences (Asian Network for Scientific Information)</jtitle><date>2015</date><risdate>2015</risdate><volume>15</volume><issue>1</issue><spage>153</spage><epage>153</epage><pages>153-153</pages><issn>1812-5654</issn><eissn>1812-5662</eissn><abstract>Forecasting rainfall and thunderstorm is one of the important requirements for planning and management of many applications, including, agriculture, flood and traffic. Considering the relevance and importance of the study, this research study aims at classification of rainfall and thunderstorm. There are various classifiers available but not limited to, Support Vector Machine (SVM), Artificial Neural Network (ANN), K-Nearest Neighbourhood classier (KNN), Adaboost, etc. Recently Dr. G.B. Huang suggested and proposed an efficient classifier based on single layer feedforward Neural Network called as Extreme Learning Machine (ELM) which is extremely powerful to be an Universal classifier. Hence, this study focuses on the classification of rainfall and thunderstorm. The results of the classification using ELM show a classification accuracy of 87.69% which is much better when compared to the results of other classifiers, namely, SVM and ANN. Hence, ELM can be considered as a good classifier for the classification of rainfall and thunderstorm.</abstract><doi>10.3923/jas.2015.153.156</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1812-5654
ispartof Journal of applied sciences (Asian Network for Scientific Information), 2015, Vol.15 (1), p.153-153
issn 1812-5654
1812-5662
language eng
recordid cdi_proquest_miscellaneous_1677970674
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Science Alert
subjects Classification
Classifiers
Learning theory
Neural networks
Rainfall
Support vector machines
Thunderstorms
title Extreme Learning Machine for the Classification of Rainfall and Thunderstorm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T07%3A19%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extreme%20Learning%20Machine%20for%20the%20Classification%20of%20Rainfall%20and%20Thunderstorm&rft.jtitle=Journal%20of%20applied%20sciences%20(Asian%20Network%20for%20Scientific%20Information)&rft.au=Sreekanth,%20M%20S&rft.date=2015&rft.volume=15&rft.issue=1&rft.spage=153&rft.epage=153&rft.pages=153-153&rft.issn=1812-5654&rft.eissn=1812-5662&rft_id=info:doi/10.3923/jas.2015.153.156&rft_dat=%3Cproquest_cross%3E1660414128%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1660414128&rft_id=info:pmid/&rfr_iscdi=true