Extreme Learning Machine for the Classification of Rainfall and Thunderstorm
Forecasting rainfall and thunderstorm is one of the important requirements for planning and management of many applications, including, agriculture, flood and traffic. Considering the relevance and importance of the study, this research study aims at classification of rainfall and thunderstorm. Ther...
Gespeichert in:
Veröffentlicht in: | Journal of applied sciences (Asian Network for Scientific Information) 2015, Vol.15 (1), p.153-153 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 153 |
---|---|
container_issue | 1 |
container_start_page | 153 |
container_title | Journal of applied sciences (Asian Network for Scientific Information) |
container_volume | 15 |
creator | Sreekanth, M S Rajesh, R Satheeshkumar, J |
description | Forecasting rainfall and thunderstorm is one of the important requirements for planning and management of many applications, including, agriculture, flood and traffic. Considering the relevance and importance of the study, this research study aims at classification of rainfall and thunderstorm. There are various classifiers available but not limited to, Support Vector Machine (SVM), Artificial Neural Network (ANN), K-Nearest Neighbourhood classier (KNN), Adaboost, etc. Recently Dr. G.B. Huang suggested and proposed an efficient classifier based on single layer feedforward Neural Network called as Extreme Learning Machine (ELM) which is extremely powerful to be an Universal classifier. Hence, this study focuses on the classification of rainfall and thunderstorm. The results of the classification using ELM show a classification accuracy of 87.69% which is much better when compared to the results of other classifiers, namely, SVM and ANN. Hence, ELM can be considered as a good classifier for the classification of rainfall and thunderstorm. |
doi_str_mv | 10.3923/jas.2015.153.156 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677970674</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1660414128</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2666-2c755ebcd1b833b7f1ddef36d170cf7f4f394b2960751fb0e2b208ba76f9b60c3</originalsourceid><addsrcrecordid>eNqNkM9LwzAYhoMoOKd3jzl66cyvfmmPMqYTKoLMc0jSxGW06Uw60P_ejolnDy_fy8fDe3gQuqVkwWvG73c6Lxih5YKWfAqcoRmtKCtKAHb-10txia5y3hEiONRyhprV15hc73DjdIohfuAXbbchOuyHhMetw8tO5xx8sHoMQ8SDx286RK-7DuvY4s32EFuX8jik_hpdTP_sbn7vHL0_rjbLddG8Pj0vH5rCMgAomJVl6Yxtqak4N9LTtnWeQ0slsV564XktDKuByJJ6QxwzjFRGS_C1AWL5HN2ddvdp-Dy4PKo-ZOu6Tkc3HLKiIGUtCUjxDxSIoIKyakLJCbVpyDk5r_Yp9Dp9K0rU0bGaHKujYzU5ngL8BxeVb4c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1660414128</pqid></control><display><type>article</type><title>Extreme Learning Machine for the Classification of Rainfall and Thunderstorm</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Science Alert</source><creator>Sreekanth, M S ; Rajesh, R ; Satheeshkumar, J</creator><creatorcontrib>Sreekanth, M S ; Rajesh, R ; Satheeshkumar, J</creatorcontrib><description>Forecasting rainfall and thunderstorm is one of the important requirements for planning and management of many applications, including, agriculture, flood and traffic. Considering the relevance and importance of the study, this research study aims at classification of rainfall and thunderstorm. There are various classifiers available but not limited to, Support Vector Machine (SVM), Artificial Neural Network (ANN), K-Nearest Neighbourhood classier (KNN), Adaboost, etc. Recently Dr. G.B. Huang suggested and proposed an efficient classifier based on single layer feedforward Neural Network called as Extreme Learning Machine (ELM) which is extremely powerful to be an Universal classifier. Hence, this study focuses on the classification of rainfall and thunderstorm. The results of the classification using ELM show a classification accuracy of 87.69% which is much better when compared to the results of other classifiers, namely, SVM and ANN. Hence, ELM can be considered as a good classifier for the classification of rainfall and thunderstorm.</description><identifier>ISSN: 1812-5654</identifier><identifier>EISSN: 1812-5662</identifier><identifier>DOI: 10.3923/jas.2015.153.156</identifier><language>eng</language><subject>Classification ; Classifiers ; Learning theory ; Neural networks ; Rainfall ; Support vector machines ; Thunderstorms</subject><ispartof>Journal of applied sciences (Asian Network for Scientific Information), 2015, Vol.15 (1), p.153-153</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2666-2c755ebcd1b833b7f1ddef36d170cf7f4f394b2960751fb0e2b208ba76f9b60c3</citedby><cites>FETCH-LOGICAL-c2666-2c755ebcd1b833b7f1ddef36d170cf7f4f394b2960751fb0e2b208ba76f9b60c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,4124,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Sreekanth, M S</creatorcontrib><creatorcontrib>Rajesh, R</creatorcontrib><creatorcontrib>Satheeshkumar, J</creatorcontrib><title>Extreme Learning Machine for the Classification of Rainfall and Thunderstorm</title><title>Journal of applied sciences (Asian Network for Scientific Information)</title><description>Forecasting rainfall and thunderstorm is one of the important requirements for planning and management of many applications, including, agriculture, flood and traffic. Considering the relevance and importance of the study, this research study aims at classification of rainfall and thunderstorm. There are various classifiers available but not limited to, Support Vector Machine (SVM), Artificial Neural Network (ANN), K-Nearest Neighbourhood classier (KNN), Adaboost, etc. Recently Dr. G.B. Huang suggested and proposed an efficient classifier based on single layer feedforward Neural Network called as Extreme Learning Machine (ELM) which is extremely powerful to be an Universal classifier. Hence, this study focuses on the classification of rainfall and thunderstorm. The results of the classification using ELM show a classification accuracy of 87.69% which is much better when compared to the results of other classifiers, namely, SVM and ANN. Hence, ELM can be considered as a good classifier for the classification of rainfall and thunderstorm.</description><subject>Classification</subject><subject>Classifiers</subject><subject>Learning theory</subject><subject>Neural networks</subject><subject>Rainfall</subject><subject>Support vector machines</subject><subject>Thunderstorms</subject><issn>1812-5654</issn><issn>1812-5662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkM9LwzAYhoMoOKd3jzl66cyvfmmPMqYTKoLMc0jSxGW06Uw60P_ejolnDy_fy8fDe3gQuqVkwWvG73c6Lxih5YKWfAqcoRmtKCtKAHb-10txia5y3hEiONRyhprV15hc73DjdIohfuAXbbchOuyHhMetw8tO5xx8sHoMQ8SDx286RK-7DuvY4s32EFuX8jik_hpdTP_sbn7vHL0_rjbLddG8Pj0vH5rCMgAomJVl6Yxtqak4N9LTtnWeQ0slsV564XktDKuByJJ6QxwzjFRGS_C1AWL5HN2ddvdp-Dy4PKo-ZOu6Tkc3HLKiIGUtCUjxDxSIoIKyakLJCbVpyDk5r_Yp9Dp9K0rU0bGaHKujYzU5ngL8BxeVb4c</recordid><startdate>2015</startdate><enddate>2015</enddate><creator>Sreekanth, M S</creator><creator>Rajesh, R</creator><creator>Satheeshkumar, J</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2015</creationdate><title>Extreme Learning Machine for the Classification of Rainfall and Thunderstorm</title><author>Sreekanth, M S ; Rajesh, R ; Satheeshkumar, J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2666-2c755ebcd1b833b7f1ddef36d170cf7f4f394b2960751fb0e2b208ba76f9b60c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Classification</topic><topic>Classifiers</topic><topic>Learning theory</topic><topic>Neural networks</topic><topic>Rainfall</topic><topic>Support vector machines</topic><topic>Thunderstorms</topic><toplevel>online_resources</toplevel><creatorcontrib>Sreekanth, M S</creatorcontrib><creatorcontrib>Rajesh, R</creatorcontrib><creatorcontrib>Satheeshkumar, J</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of applied sciences (Asian Network for Scientific Information)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sreekanth, M S</au><au>Rajesh, R</au><au>Satheeshkumar, J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extreme Learning Machine for the Classification of Rainfall and Thunderstorm</atitle><jtitle>Journal of applied sciences (Asian Network for Scientific Information)</jtitle><date>2015</date><risdate>2015</risdate><volume>15</volume><issue>1</issue><spage>153</spage><epage>153</epage><pages>153-153</pages><issn>1812-5654</issn><eissn>1812-5662</eissn><abstract>Forecasting rainfall and thunderstorm is one of the important requirements for planning and management of many applications, including, agriculture, flood and traffic. Considering the relevance and importance of the study, this research study aims at classification of rainfall and thunderstorm. There are various classifiers available but not limited to, Support Vector Machine (SVM), Artificial Neural Network (ANN), K-Nearest Neighbourhood classier (KNN), Adaboost, etc. Recently Dr. G.B. Huang suggested and proposed an efficient classifier based on single layer feedforward Neural Network called as Extreme Learning Machine (ELM) which is extremely powerful to be an Universal classifier. Hence, this study focuses on the classification of rainfall and thunderstorm. The results of the classification using ELM show a classification accuracy of 87.69% which is much better when compared to the results of other classifiers, namely, SVM and ANN. Hence, ELM can be considered as a good classifier for the classification of rainfall and thunderstorm.</abstract><doi>10.3923/jas.2015.153.156</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1812-5654 |
ispartof | Journal of applied sciences (Asian Network for Scientific Information), 2015, Vol.15 (1), p.153-153 |
issn | 1812-5654 1812-5662 |
language | eng |
recordid | cdi_proquest_miscellaneous_1677970674 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Science Alert |
subjects | Classification Classifiers Learning theory Neural networks Rainfall Support vector machines Thunderstorms |
title | Extreme Learning Machine for the Classification of Rainfall and Thunderstorm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T07%3A19%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extreme%20Learning%20Machine%20for%20the%20Classification%20of%20Rainfall%20and%20Thunderstorm&rft.jtitle=Journal%20of%20applied%20sciences%20(Asian%20Network%20for%20Scientific%20Information)&rft.au=Sreekanth,%20M%20S&rft.date=2015&rft.volume=15&rft.issue=1&rft.spage=153&rft.epage=153&rft.pages=153-153&rft.issn=1812-5654&rft.eissn=1812-5662&rft_id=info:doi/10.3923/jas.2015.153.156&rft_dat=%3Cproquest_cross%3E1660414128%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1660414128&rft_id=info:pmid/&rfr_iscdi=true |