Airborne GPS radio occultation refractivity profiles observed in tropical storm environments
Airborne GPS radio occultation (ARO) data have been collected during the 2010 PRE‐Depression Investigation of Cloud systems in the Tropics (PREDICT) experiment. GPS signals received by the airborne Global Navigation Satellite System Instrument System for Multistatic and Occultation Sensing (GISMOS)...
Gespeichert in:
Veröffentlicht in: | Journal of geophysical research. Atmospheres 2015-03, Vol.120 (5), p.1690-1709 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1709 |
---|---|
container_issue | 5 |
container_start_page | 1690 |
container_title | Journal of geophysical research. Atmospheres |
container_volume | 120 |
creator | Murphy, B. J. Haase, J. S. Muradyan, P. Garrison, J. L. Wang, K.-N. |
description | Airborne GPS radio occultation (ARO) data have been collected during the 2010 PRE‐Depression Investigation of Cloud systems in the Tropics (PREDICT) experiment. GPS signals received by the airborne Global Navigation Satellite System Instrument System for Multistatic and Occultation Sensing (GISMOS) are used to retrieve vertical profiles of refractivity in the neutral atmosphere. The system includes a conventional geodetic GPS receiver component for straightforward validation of the analysis method in the middle to upper troposphere, and a high‐sample rate (10 MHz) GPS recorder for postprocessing complex signals that probe the lower troposphere. The results from the geodetic receivers are presented here. The retrieved ARO profiles consistently agree within ~2% of refractivity profiles calculated from the European Center for Medium‐Range Weather Forecasting model Interim reanalyses as well as from nearby dropsondes and radiosondes. Changes in refractivity obtained from ARO data over the 5 days leading to the genesis of tropical storm Karl are consistent with moistening in the vicinity of the storm center. An open‐loop tracking method was implemented in a test case to analyze GPS signals from the GISMOS 10 MHz recording system for comparison with geodetic receiver data. The open‐loop mode successfully tracked ~2 km deeper into the troposphere than the conventional receiver and can also track rising occultations, illustrating the benefit from the high‐rate recording system. Accurate refractivity retrievals are an important first step toward the future goal of assimilating moisture profiles to improve forecasting of developing storms using this new GPS occultation technique.
Key Points
Atmospheric refractivity profiles found using Airborne Radio Occultation (ARO)
This is the first utilization of ARO in a full‐scale science mission
ARO refractivity is generally within 2% of independent sounding measurements |
doi_str_mv | 10.1002/2014JD022931 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677969295</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3633447971</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4496-eb0ba582c3f62c9545ac5a3cd370e69233fb94cc535644310fafe2ee058113363</originalsourceid><addsrcrecordid>eNqNkU9vEzEQxa0KpFahNz6AJS4cusX22N71sWppoKqg_G2FkCyvMyu5bNap7QTy7XEVVKEeEL6MD78382YeIc85O-aMiVeCcXlxxoQwwPfIgeDaNJ0x-snDv73ZJ4c537L6OgZSyQPy_SSkPqYJ6fzqE01uESKN3q_H4kqIE004JOdL2ISypasUhzBiprHPmDa4oGGiJcVV8G6kucS0pDhtQorTEqeSn5GngxszHv6pM_Ll_PXn0zfN5fv529OTy8ZLaXSDPeud6oSHQQtvlFTOKwd-AS1DbQTA0BvpvQKlpQTOBjegQGSq4xxAw4y83PWtBu_WmItdhuxxHN2EcZ0t121raiOj_gcF6GRbh87Ii0fobVynqS5SKd1qAffeZuRoR_kUc67nsqsUli5tLWf2Phj7dzAVhx3-sx5y-0_WXsw_nileI6yqZqcKueCvB5VLP2z12yp7_W5ulVDt1Yevnf0GvwGMvJ1L</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1667623692</pqid></control><display><type>article</type><title>Airborne GPS radio occultation refractivity profiles observed in tropical storm environments</title><source>Wiley Free Content</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>Murphy, B. J. ; Haase, J. S. ; Muradyan, P. ; Garrison, J. L. ; Wang, K.-N.</creator><creatorcontrib>Murphy, B. J. ; Haase, J. S. ; Muradyan, P. ; Garrison, J. L. ; Wang, K.-N.</creatorcontrib><description>Airborne GPS radio occultation (ARO) data have been collected during the 2010 PRE‐Depression Investigation of Cloud systems in the Tropics (PREDICT) experiment. GPS signals received by the airborne Global Navigation Satellite System Instrument System for Multistatic and Occultation Sensing (GISMOS) are used to retrieve vertical profiles of refractivity in the neutral atmosphere. The system includes a conventional geodetic GPS receiver component for straightforward validation of the analysis method in the middle to upper troposphere, and a high‐sample rate (10 MHz) GPS recorder for postprocessing complex signals that probe the lower troposphere. The results from the geodetic receivers are presented here. The retrieved ARO profiles consistently agree within ~2% of refractivity profiles calculated from the European Center for Medium‐Range Weather Forecasting model Interim reanalyses as well as from nearby dropsondes and radiosondes. Changes in refractivity obtained from ARO data over the 5 days leading to the genesis of tropical storm Karl are consistent with moistening in the vicinity of the storm center. An open‐loop tracking method was implemented in a test case to analyze GPS signals from the GISMOS 10 MHz recording system for comparison with geodetic receiver data. The open‐loop mode successfully tracked ~2 km deeper into the troposphere than the conventional receiver and can also track rising occultations, illustrating the benefit from the high‐rate recording system. Accurate refractivity retrievals are an important first step toward the future goal of assimilating moisture profiles to improve forecasting of developing storms using this new GPS occultation technique.
Key Points
Atmospheric refractivity profiles found using Airborne Radio Occultation (ARO)
This is the first utilization of ARO in a full‐scale science mission
ARO refractivity is generally within 2% of independent sounding measurements</description><identifier>ISSN: 2169-897X</identifier><identifier>EISSN: 2169-8996</identifier><identifier>DOI: 10.1002/2014JD022931</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>airborne observations ; dropsondes ; Geophysics ; Global positioning systems ; GPS ; Mathematical models ; Moisture profiles ; Occultation ; Radio occultation ; Radios ; Radiosondes ; Receivers ; Receivers & amplifiers ; Recording ; Refractivity ; Storms ; tropical cyclone ; Tropical environments ; Tropical storms ; Troposphere ; Weather forecasting</subject><ispartof>Journal of geophysical research. Atmospheres, 2015-03, Vol.120 (5), p.1690-1709</ispartof><rights>2015. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4496-eb0ba582c3f62c9545ac5a3cd370e69233fb94cc535644310fafe2ee058113363</citedby><cites>FETCH-LOGICAL-c4496-eb0ba582c3f62c9545ac5a3cd370e69233fb94cc535644310fafe2ee058113363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2014JD022931$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2014JD022931$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids></links><search><creatorcontrib>Murphy, B. J.</creatorcontrib><creatorcontrib>Haase, J. S.</creatorcontrib><creatorcontrib>Muradyan, P.</creatorcontrib><creatorcontrib>Garrison, J. L.</creatorcontrib><creatorcontrib>Wang, K.-N.</creatorcontrib><title>Airborne GPS radio occultation refractivity profiles observed in tropical storm environments</title><title>Journal of geophysical research. Atmospheres</title><addtitle>J. Geophys. Res. Atmos</addtitle><description>Airborne GPS radio occultation (ARO) data have been collected during the 2010 PRE‐Depression Investigation of Cloud systems in the Tropics (PREDICT) experiment. GPS signals received by the airborne Global Navigation Satellite System Instrument System for Multistatic and Occultation Sensing (GISMOS) are used to retrieve vertical profiles of refractivity in the neutral atmosphere. The system includes a conventional geodetic GPS receiver component for straightforward validation of the analysis method in the middle to upper troposphere, and a high‐sample rate (10 MHz) GPS recorder for postprocessing complex signals that probe the lower troposphere. The results from the geodetic receivers are presented here. The retrieved ARO profiles consistently agree within ~2% of refractivity profiles calculated from the European Center for Medium‐Range Weather Forecasting model Interim reanalyses as well as from nearby dropsondes and radiosondes. Changes in refractivity obtained from ARO data over the 5 days leading to the genesis of tropical storm Karl are consistent with moistening in the vicinity of the storm center. An open‐loop tracking method was implemented in a test case to analyze GPS signals from the GISMOS 10 MHz recording system for comparison with geodetic receiver data. The open‐loop mode successfully tracked ~2 km deeper into the troposphere than the conventional receiver and can also track rising occultations, illustrating the benefit from the high‐rate recording system. Accurate refractivity retrievals are an important first step toward the future goal of assimilating moisture profiles to improve forecasting of developing storms using this new GPS occultation technique.
Key Points
Atmospheric refractivity profiles found using Airborne Radio Occultation (ARO)
This is the first utilization of ARO in a full‐scale science mission
ARO refractivity is generally within 2% of independent sounding measurements</description><subject>airborne observations</subject><subject>dropsondes</subject><subject>Geophysics</subject><subject>Global positioning systems</subject><subject>GPS</subject><subject>Mathematical models</subject><subject>Moisture profiles</subject><subject>Occultation</subject><subject>Radio occultation</subject><subject>Radios</subject><subject>Radiosondes</subject><subject>Receivers</subject><subject>Receivers & amplifiers</subject><subject>Recording</subject><subject>Refractivity</subject><subject>Storms</subject><subject>tropical cyclone</subject><subject>Tropical environments</subject><subject>Tropical storms</subject><subject>Troposphere</subject><subject>Weather forecasting</subject><issn>2169-897X</issn><issn>2169-8996</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkU9vEzEQxa0KpFahNz6AJS4cusX22N71sWppoKqg_G2FkCyvMyu5bNap7QTy7XEVVKEeEL6MD78382YeIc85O-aMiVeCcXlxxoQwwPfIgeDaNJ0x-snDv73ZJ4c537L6OgZSyQPy_SSkPqYJ6fzqE01uESKN3q_H4kqIE004JOdL2ISypasUhzBiprHPmDa4oGGiJcVV8G6kucS0pDhtQorTEqeSn5GngxszHv6pM_Ll_PXn0zfN5fv529OTy8ZLaXSDPeud6oSHQQtvlFTOKwd-AS1DbQTA0BvpvQKlpQTOBjegQGSq4xxAw4y83PWtBu_WmItdhuxxHN2EcZ0t121raiOj_gcF6GRbh87Ii0fobVynqS5SKd1qAffeZuRoR_kUc67nsqsUli5tLWf2Phj7dzAVhx3-sx5y-0_WXsw_nileI6yqZqcKueCvB5VLP2z12yp7_W5ulVDt1Yevnf0GvwGMvJ1L</recordid><startdate>20150316</startdate><enddate>20150316</enddate><creator>Murphy, B. J.</creator><creator>Haase, J. S.</creator><creator>Muradyan, P.</creator><creator>Garrison, J. L.</creator><creator>Wang, K.-N.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7TN</scope></search><sort><creationdate>20150316</creationdate><title>Airborne GPS radio occultation refractivity profiles observed in tropical storm environments</title><author>Murphy, B. J. ; Haase, J. S. ; Muradyan, P. ; Garrison, J. L. ; Wang, K.-N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4496-eb0ba582c3f62c9545ac5a3cd370e69233fb94cc535644310fafe2ee058113363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>airborne observations</topic><topic>dropsondes</topic><topic>Geophysics</topic><topic>Global positioning systems</topic><topic>GPS</topic><topic>Mathematical models</topic><topic>Moisture profiles</topic><topic>Occultation</topic><topic>Radio occultation</topic><topic>Radios</topic><topic>Radiosondes</topic><topic>Receivers</topic><topic>Receivers & amplifiers</topic><topic>Recording</topic><topic>Refractivity</topic><topic>Storms</topic><topic>tropical cyclone</topic><topic>Tropical environments</topic><topic>Tropical storms</topic><topic>Troposphere</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Murphy, B. J.</creatorcontrib><creatorcontrib>Haase, J. S.</creatorcontrib><creatorcontrib>Muradyan, P.</creatorcontrib><creatorcontrib>Garrison, J. L.</creatorcontrib><creatorcontrib>Wang, K.-N.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Oceanic Abstracts</collection><jtitle>Journal of geophysical research. Atmospheres</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Murphy, B. J.</au><au>Haase, J. S.</au><au>Muradyan, P.</au><au>Garrison, J. L.</au><au>Wang, K.-N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Airborne GPS radio occultation refractivity profiles observed in tropical storm environments</atitle><jtitle>Journal of geophysical research. Atmospheres</jtitle><addtitle>J. Geophys. Res. Atmos</addtitle><date>2015-03-16</date><risdate>2015</risdate><volume>120</volume><issue>5</issue><spage>1690</spage><epage>1709</epage><pages>1690-1709</pages><issn>2169-897X</issn><eissn>2169-8996</eissn><abstract>Airborne GPS radio occultation (ARO) data have been collected during the 2010 PRE‐Depression Investigation of Cloud systems in the Tropics (PREDICT) experiment. GPS signals received by the airborne Global Navigation Satellite System Instrument System for Multistatic and Occultation Sensing (GISMOS) are used to retrieve vertical profiles of refractivity in the neutral atmosphere. The system includes a conventional geodetic GPS receiver component for straightforward validation of the analysis method in the middle to upper troposphere, and a high‐sample rate (10 MHz) GPS recorder for postprocessing complex signals that probe the lower troposphere. The results from the geodetic receivers are presented here. The retrieved ARO profiles consistently agree within ~2% of refractivity profiles calculated from the European Center for Medium‐Range Weather Forecasting model Interim reanalyses as well as from nearby dropsondes and radiosondes. Changes in refractivity obtained from ARO data over the 5 days leading to the genesis of tropical storm Karl are consistent with moistening in the vicinity of the storm center. An open‐loop tracking method was implemented in a test case to analyze GPS signals from the GISMOS 10 MHz recording system for comparison with geodetic receiver data. The open‐loop mode successfully tracked ~2 km deeper into the troposphere than the conventional receiver and can also track rising occultations, illustrating the benefit from the high‐rate recording system. Accurate refractivity retrievals are an important first step toward the future goal of assimilating moisture profiles to improve forecasting of developing storms using this new GPS occultation technique.
Key Points
Atmospheric refractivity profiles found using Airborne Radio Occultation (ARO)
This is the first utilization of ARO in a full‐scale science mission
ARO refractivity is generally within 2% of independent sounding measurements</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2014JD022931</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-897X |
ispartof | Journal of geophysical research. Atmospheres, 2015-03, Vol.120 (5), p.1690-1709 |
issn | 2169-897X 2169-8996 |
language | eng |
recordid | cdi_proquest_miscellaneous_1677969295 |
source | Wiley Free Content; Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection |
subjects | airborne observations dropsondes Geophysics Global positioning systems GPS Mathematical models Moisture profiles Occultation Radio occultation Radios Radiosondes Receivers Receivers & amplifiers Recording Refractivity Storms tropical cyclone Tropical environments Tropical storms Troposphere Weather forecasting |
title | Airborne GPS radio occultation refractivity profiles observed in tropical storm environments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T19%3A46%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Airborne%20GPS%20radio%20occultation%20refractivity%20profiles%20observed%20in%20tropical%20storm%20environments&rft.jtitle=Journal%20of%20geophysical%20research.%20Atmospheres&rft.au=Murphy,%20B.%20J.&rft.date=2015-03-16&rft.volume=120&rft.issue=5&rft.spage=1690&rft.epage=1709&rft.pages=1690-1709&rft.issn=2169-897X&rft.eissn=2169-8996&rft_id=info:doi/10.1002/2014JD022931&rft_dat=%3Cproquest_cross%3E3633447971%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1667623692&rft_id=info:pmid/&rfr_iscdi=true |