Modelling and stabilization of a nonlinear hybrid system of elasticity

In this article, we briefly present a model which consists of a non-homogeneous flexible beam clamped at its left end to a rigid disk and free at the right end, where another rigid body is attached. We assume that the disk rotates with a non-uniform angular velocity while the beam is supposed to rot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematical modelling 2015-01, Vol.39 (2), p.621-629
1. Verfasser: Chentouf, Boumediène
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 629
container_issue 2
container_start_page 621
container_title Applied mathematical modelling
container_volume 39
creator Chentouf, Boumediène
description In this article, we briefly present a model which consists of a non-homogeneous flexible beam clamped at its left end to a rigid disk and free at the right end, where another rigid body is attached. We assume that the disk rotates with a non-uniform angular velocity while the beam is supposed to rotate with the disk in another plane perpendicular to that of the disk. Thereafter, we propose a wide class of feedback laws depending on the assumptions made on the physical parameters. In each case, we show that whenever the angular velocity is not exceeding a certain upper bound, the beam vibrations decay exponentially to zero and the disk rotates with a desired angular velocity.
doi_str_mv 10.1016/j.apm.2014.06.015
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677966314</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0307904X14003345</els_id><sourcerecordid>1677966314</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-9ca1af553c5116c58041bda88fce94521c2aa8547ca2e16a6b3c9f2ec0518e7f3</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhT2ARCn8ALaMLAm-JHYSMaGKAlIRC0hs1sW5gKskLraLFH49rsrMdHp67530PsaugGfAQd5sM9yNWc6hzLjMOIgTtuAFr9KGl-9n7Nz7LedcRLVg62fb0TCY6SPBqUt8wNYM5geDsVNi-wSTyU7RJnTJ59w6EzOzDzQeTBrQB6NNmC_YaY-Dp8u_u2Rv6_vX1WO6eXl4Wt1tUl0UPKSNRsBeiEILAKlFzUtoO6zrXlNTihx0jliLstKYE0iUbaGbPifNBdRU9cWSXR__7pz92pMPajRexwE4kd17BbKqGikLKGMUjlHtrPeOerVzZkQ3K-DqwEltVeSkDpwUlypyip3bY4fihm9DTnltaNLUGUc6qM6af9q_K91zGA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1677966314</pqid></control><display><type>article</type><title>Modelling and stabilization of a nonlinear hybrid system of elasticity</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Chentouf, Boumediène</creator><creatorcontrib>Chentouf, Boumediène</creatorcontrib><description>In this article, we briefly present a model which consists of a non-homogeneous flexible beam clamped at its left end to a rigid disk and free at the right end, where another rigid body is attached. We assume that the disk rotates with a non-uniform angular velocity while the beam is supposed to rotate with the disk in another plane perpendicular to that of the disk. Thereafter, we propose a wide class of feedback laws depending on the assumptions made on the physical parameters. In each case, we show that whenever the angular velocity is not exceeding a certain upper bound, the beam vibrations decay exponentially to zero and the disk rotates with a desired angular velocity.</description><identifier>ISSN: 0307-904X</identifier><identifier>DOI: 10.1016/j.apm.2014.06.015</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Angular velocity ; Beams (structural) ; Disks ; Exponential stability ; Mathematical models ; Modelling ; Non-homogeneous beam ; Nonlinear hybrid system ; Rigid-body dynamics ; Rotating flexible structure ; Torque and boundary controls ; Vibration</subject><ispartof>Applied mathematical modelling, 2015-01, Vol.39 (2), p.621-629</ispartof><rights>2014 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-9ca1af553c5116c58041bda88fce94521c2aa8547ca2e16a6b3c9f2ec0518e7f3</citedby><cites>FETCH-LOGICAL-c330t-9ca1af553c5116c58041bda88fce94521c2aa8547ca2e16a6b3c9f2ec0518e7f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.apm.2014.06.015$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Chentouf, Boumediène</creatorcontrib><title>Modelling and stabilization of a nonlinear hybrid system of elasticity</title><title>Applied mathematical modelling</title><description>In this article, we briefly present a model which consists of a non-homogeneous flexible beam clamped at its left end to a rigid disk and free at the right end, where another rigid body is attached. We assume that the disk rotates with a non-uniform angular velocity while the beam is supposed to rotate with the disk in another plane perpendicular to that of the disk. Thereafter, we propose a wide class of feedback laws depending on the assumptions made on the physical parameters. In each case, we show that whenever the angular velocity is not exceeding a certain upper bound, the beam vibrations decay exponentially to zero and the disk rotates with a desired angular velocity.</description><subject>Angular velocity</subject><subject>Beams (structural)</subject><subject>Disks</subject><subject>Exponential stability</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Non-homogeneous beam</subject><subject>Nonlinear hybrid system</subject><subject>Rigid-body dynamics</subject><subject>Rotating flexible structure</subject><subject>Torque and boundary controls</subject><subject>Vibration</subject><issn>0307-904X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kDFPwzAQhT2ARCn8ALaMLAm-JHYSMaGKAlIRC0hs1sW5gKskLraLFH49rsrMdHp67530PsaugGfAQd5sM9yNWc6hzLjMOIgTtuAFr9KGl-9n7Nz7LedcRLVg62fb0TCY6SPBqUt8wNYM5geDsVNi-wSTyU7RJnTJ59w6EzOzDzQeTBrQB6NNmC_YaY-Dp8u_u2Rv6_vX1WO6eXl4Wt1tUl0UPKSNRsBeiEILAKlFzUtoO6zrXlNTihx0jliLstKYE0iUbaGbPifNBdRU9cWSXR__7pz92pMPajRexwE4kd17BbKqGikLKGMUjlHtrPeOerVzZkQ3K-DqwEltVeSkDpwUlypyip3bY4fihm9DTnltaNLUGUc6qM6af9q_K91zGA</recordid><startdate>20150115</startdate><enddate>20150115</enddate><creator>Chentouf, Boumediène</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150115</creationdate><title>Modelling and stabilization of a nonlinear hybrid system of elasticity</title><author>Chentouf, Boumediène</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-9ca1af553c5116c58041bda88fce94521c2aa8547ca2e16a6b3c9f2ec0518e7f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Angular velocity</topic><topic>Beams (structural)</topic><topic>Disks</topic><topic>Exponential stability</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Non-homogeneous beam</topic><topic>Nonlinear hybrid system</topic><topic>Rigid-body dynamics</topic><topic>Rotating flexible structure</topic><topic>Torque and boundary controls</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chentouf, Boumediène</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematical modelling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chentouf, Boumediène</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling and stabilization of a nonlinear hybrid system of elasticity</atitle><jtitle>Applied mathematical modelling</jtitle><date>2015-01-15</date><risdate>2015</risdate><volume>39</volume><issue>2</issue><spage>621</spage><epage>629</epage><pages>621-629</pages><issn>0307-904X</issn><abstract>In this article, we briefly present a model which consists of a non-homogeneous flexible beam clamped at its left end to a rigid disk and free at the right end, where another rigid body is attached. We assume that the disk rotates with a non-uniform angular velocity while the beam is supposed to rotate with the disk in another plane perpendicular to that of the disk. Thereafter, we propose a wide class of feedback laws depending on the assumptions made on the physical parameters. In each case, we show that whenever the angular velocity is not exceeding a certain upper bound, the beam vibrations decay exponentially to zero and the disk rotates with a desired angular velocity.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.apm.2014.06.015</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0307-904X
ispartof Applied mathematical modelling, 2015-01, Vol.39 (2), p.621-629
issn 0307-904X
language eng
recordid cdi_proquest_miscellaneous_1677966314
source Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Angular velocity
Beams (structural)
Disks
Exponential stability
Mathematical models
Modelling
Non-homogeneous beam
Nonlinear hybrid system
Rigid-body dynamics
Rotating flexible structure
Torque and boundary controls
Vibration
title Modelling and stabilization of a nonlinear hybrid system of elasticity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T06%3A13%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20and%20stabilization%20of%20a%20nonlinear%20hybrid%20system%20of%20elasticity&rft.jtitle=Applied%20mathematical%20modelling&rft.au=Chentouf,%20Boumedi%C3%A8ne&rft.date=2015-01-15&rft.volume=39&rft.issue=2&rft.spage=621&rft.epage=629&rft.pages=621-629&rft.issn=0307-904X&rft_id=info:doi/10.1016/j.apm.2014.06.015&rft_dat=%3Cproquest_cross%3E1677966314%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1677966314&rft_id=info:pmid/&rft_els_id=S0307904X14003345&rfr_iscdi=true