Vortex dynamics and structures of methane/air jet diffusion flames with air coflow

In this paper, high speed direct/schlieren imaging system together with Particle Image Velocimetry (PIV) system is applied to investigate the vortex dynamics and structures of methane–air coflow diffusion flames. The schlieren and PIV images show that the dynamics of the vortices outside the visible...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experimental thermal and fluid science 2012-02, Vol.37, p.84-90
Hauptverfasser: Wang, Q., Gohari Darabkhani, H., Chen, L., Zhang, Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 90
container_issue
container_start_page 84
container_title Experimental thermal and fluid science
container_volume 37
creator Wang, Q.
Gohari Darabkhani, H.
Chen, L.
Zhang, Y.
description In this paper, high speed direct/schlieren imaging system together with Particle Image Velocimetry (PIV) system is applied to investigate the vortex dynamics and structures of methane–air coflow diffusion flames. The schlieren and PIV images show that the dynamics of the vortices outside the visible flame are strongly affected by the coflow air velocity. The coflow air is observed to push the initiation point of toroidal vortices from the nozzle exit to downstream. When the vortices are pushed beyond the visible flame height, the typical flame flickering behavior disappears and the flame becomes stable. The critical air flow rate at which the flame stops oscillating is observed to increase with the fuel flow rate. The visible flame shows no obvious change when the coflow flow rate exceeds a critical value. However, the flow pattern and vortices outside the visible flame keep changing at different air flow rates. The velocity vectors and vorticity contours at different air flow rates are presented and analyzed. The shedding frequency of the toroidal vortex is in good agreement with the flame flickering frequency obtained from a photomultiplier.
doi_str_mv 10.1016/j.expthermflusci.2011.10.006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677965807</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0894177711002093</els_id><sourcerecordid>1010885161</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-47e482f40413243f8d34a7e7806c346d5ae60f4f1eb8cbf22e2b8f003abc62df3</originalsourceid><addsrcrecordid>eNqNkMFqGzEQhkVJoU7ad9ChgV7WHmm1kgy9FFOnAUMhJLkusnaEZXZXjqStk7ePjEOhp_Q0h_-bb4afkK8M5gyYXOzn-HzIO4yD66dk_ZwDYyWaA8gPZMa0Wlaca3lBZqCXomJKqU_kMqU9AGjOYEbuHkPM-Ey7l9EM3iZqxo6mHCebp4iJBkcHzDsz4sL4SPeYaeedm5IPI3W9GQpz9HlHT6kNrg_Hz-SjM33CL2_zijysf96vflWb3ze3qx-bygoucyUUCs2dAMFqLmqnu1oYhUqDtLWQXWNQghOO4VbbreMc-VY7gNpsreSdq6_It7P3EMPThCm3g08W-748G6bUMqnUUjYa1PsoMNC6YZIV9PsZtTGkFNG1h-gHE18KdOJku2__bb09tX5KS-tl_frtkknW9C6a0fr018GbpiikKNz6zGFp6I_H2BYTjhY7H9Hmtgv-_w6-AkAIobM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1010885161</pqid></control><display><type>article</type><title>Vortex dynamics and structures of methane/air jet diffusion flames with air coflow</title><source>Elsevier ScienceDirect Journals</source><creator>Wang, Q. ; Gohari Darabkhani, H. ; Chen, L. ; Zhang, Y.</creator><creatorcontrib>Wang, Q. ; Gohari Darabkhani, H. ; Chen, L. ; Zhang, Y.</creatorcontrib><description>In this paper, high speed direct/schlieren imaging system together with Particle Image Velocimetry (PIV) system is applied to investigate the vortex dynamics and structures of methane–air coflow diffusion flames. The schlieren and PIV images show that the dynamics of the vortices outside the visible flame are strongly affected by the coflow air velocity. The coflow air is observed to push the initiation point of toroidal vortices from the nozzle exit to downstream. When the vortices are pushed beyond the visible flame height, the typical flame flickering behavior disappears and the flame becomes stable. The critical air flow rate at which the flame stops oscillating is observed to increase with the fuel flow rate. The visible flame shows no obvious change when the coflow flow rate exceeds a critical value. However, the flow pattern and vortices outside the visible flame keep changing at different air flow rates. The velocity vectors and vorticity contours at different air flow rates are presented and analyzed. The shedding frequency of the toroidal vortex is in good agreement with the flame flickering frequency obtained from a photomultiplier.</description><identifier>ISSN: 0894-1777</identifier><identifier>EISSN: 1879-2286</identifier><identifier>DOI: 10.1016/j.expthermflusci.2011.10.006</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Aerodynamics ; Air flow ; Applied sciences ; Coflow ; Combustion of gaseous fuels ; Combustion. Flame ; Dynamical systems ; Dynamics ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Fluid dynamics ; Fluid flow ; PIV ; Schlieren ; Theoretical studies. Data and constants. Metering ; Vortex dynamics ; Vortices</subject><ispartof>Experimental thermal and fluid science, 2012-02, Vol.37, p.84-90</ispartof><rights>2011 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-47e482f40413243f8d34a7e7806c346d5ae60f4f1eb8cbf22e2b8f003abc62df3</citedby><cites>FETCH-LOGICAL-c426t-47e482f40413243f8d34a7e7806c346d5ae60f4f1eb8cbf22e2b8f003abc62df3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.expthermflusci.2011.10.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25501664$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Q.</creatorcontrib><creatorcontrib>Gohari Darabkhani, H.</creatorcontrib><creatorcontrib>Chen, L.</creatorcontrib><creatorcontrib>Zhang, Y.</creatorcontrib><title>Vortex dynamics and structures of methane/air jet diffusion flames with air coflow</title><title>Experimental thermal and fluid science</title><description>In this paper, high speed direct/schlieren imaging system together with Particle Image Velocimetry (PIV) system is applied to investigate the vortex dynamics and structures of methane–air coflow diffusion flames. The schlieren and PIV images show that the dynamics of the vortices outside the visible flame are strongly affected by the coflow air velocity. The coflow air is observed to push the initiation point of toroidal vortices from the nozzle exit to downstream. When the vortices are pushed beyond the visible flame height, the typical flame flickering behavior disappears and the flame becomes stable. The critical air flow rate at which the flame stops oscillating is observed to increase with the fuel flow rate. The visible flame shows no obvious change when the coflow flow rate exceeds a critical value. However, the flow pattern and vortices outside the visible flame keep changing at different air flow rates. The velocity vectors and vorticity contours at different air flow rates are presented and analyzed. The shedding frequency of the toroidal vortex is in good agreement with the flame flickering frequency obtained from a photomultiplier.</description><subject>Aerodynamics</subject><subject>Air flow</subject><subject>Applied sciences</subject><subject>Coflow</subject><subject>Combustion of gaseous fuels</subject><subject>Combustion. Flame</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>PIV</subject><subject>Schlieren</subject><subject>Theoretical studies. Data and constants. Metering</subject><subject>Vortex dynamics</subject><subject>Vortices</subject><issn>0894-1777</issn><issn>1879-2286</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqNkMFqGzEQhkVJoU7ad9ChgV7WHmm1kgy9FFOnAUMhJLkusnaEZXZXjqStk7ePjEOhp_Q0h_-bb4afkK8M5gyYXOzn-HzIO4yD66dk_ZwDYyWaA8gPZMa0Wlaca3lBZqCXomJKqU_kMqU9AGjOYEbuHkPM-Ey7l9EM3iZqxo6mHCebp4iJBkcHzDsz4sL4SPeYaeedm5IPI3W9GQpz9HlHT6kNrg_Hz-SjM33CL2_zijysf96vflWb3ze3qx-bygoucyUUCs2dAMFqLmqnu1oYhUqDtLWQXWNQghOO4VbbreMc-VY7gNpsreSdq6_It7P3EMPThCm3g08W-748G6bUMqnUUjYa1PsoMNC6YZIV9PsZtTGkFNG1h-gHE18KdOJku2__bb09tX5KS-tl_frtkknW9C6a0fr018GbpiikKNz6zGFp6I_H2BYTjhY7H9Hmtgv-_w6-AkAIobM</recordid><startdate>20120201</startdate><enddate>20120201</enddate><creator>Wang, Q.</creator><creator>Gohari Darabkhani, H.</creator><creator>Chen, L.</creator><creator>Zhang, Y.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20120201</creationdate><title>Vortex dynamics and structures of methane/air jet diffusion flames with air coflow</title><author>Wang, Q. ; Gohari Darabkhani, H. ; Chen, L. ; Zhang, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-47e482f40413243f8d34a7e7806c346d5ae60f4f1eb8cbf22e2b8f003abc62df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Aerodynamics</topic><topic>Air flow</topic><topic>Applied sciences</topic><topic>Coflow</topic><topic>Combustion of gaseous fuels</topic><topic>Combustion. Flame</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>PIV</topic><topic>Schlieren</topic><topic>Theoretical studies. Data and constants. Metering</topic><topic>Vortex dynamics</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Q.</creatorcontrib><creatorcontrib>Gohari Darabkhani, H.</creatorcontrib><creatorcontrib>Chen, L.</creatorcontrib><creatorcontrib>Zhang, Y.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Experimental thermal and fluid science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Q.</au><au>Gohari Darabkhani, H.</au><au>Chen, L.</au><au>Zhang, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vortex dynamics and structures of methane/air jet diffusion flames with air coflow</atitle><jtitle>Experimental thermal and fluid science</jtitle><date>2012-02-01</date><risdate>2012</risdate><volume>37</volume><spage>84</spage><epage>90</epage><pages>84-90</pages><issn>0894-1777</issn><eissn>1879-2286</eissn><abstract>In this paper, high speed direct/schlieren imaging system together with Particle Image Velocimetry (PIV) system is applied to investigate the vortex dynamics and structures of methane–air coflow diffusion flames. The schlieren and PIV images show that the dynamics of the vortices outside the visible flame are strongly affected by the coflow air velocity. The coflow air is observed to push the initiation point of toroidal vortices from the nozzle exit to downstream. When the vortices are pushed beyond the visible flame height, the typical flame flickering behavior disappears and the flame becomes stable. The critical air flow rate at which the flame stops oscillating is observed to increase with the fuel flow rate. The visible flame shows no obvious change when the coflow flow rate exceeds a critical value. However, the flow pattern and vortices outside the visible flame keep changing at different air flow rates. The velocity vectors and vorticity contours at different air flow rates are presented and analyzed. The shedding frequency of the toroidal vortex is in good agreement with the flame flickering frequency obtained from a photomultiplier.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.expthermflusci.2011.10.006</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0894-1777
ispartof Experimental thermal and fluid science, 2012-02, Vol.37, p.84-90
issn 0894-1777
1879-2286
language eng
recordid cdi_proquest_miscellaneous_1677965807
source Elsevier ScienceDirect Journals
subjects Aerodynamics
Air flow
Applied sciences
Coflow
Combustion of gaseous fuels
Combustion. Flame
Dynamical systems
Dynamics
Energy
Energy. Thermal use of fuels
Exact sciences and technology
Fluid dynamics
Fluid flow
PIV
Schlieren
Theoretical studies. Data and constants. Metering
Vortex dynamics
Vortices
title Vortex dynamics and structures of methane/air jet diffusion flames with air coflow
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T11%3A20%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vortex%20dynamics%20and%20structures%20of%20methane/air%20jet%20diffusion%20flames%20with%20air%20coflow&rft.jtitle=Experimental%20thermal%20and%20fluid%20science&rft.au=Wang,%20Q.&rft.date=2012-02-01&rft.volume=37&rft.spage=84&rft.epage=90&rft.pages=84-90&rft.issn=0894-1777&rft.eissn=1879-2286&rft_id=info:doi/10.1016/j.expthermflusci.2011.10.006&rft_dat=%3Cproquest_cross%3E1010885161%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1010885161&rft_id=info:pmid/&rft_els_id=S0894177711002093&rfr_iscdi=true