Vortex dynamics and structures of methane/air jet diffusion flames with air coflow
In this paper, high speed direct/schlieren imaging system together with Particle Image Velocimetry (PIV) system is applied to investigate the vortex dynamics and structures of methane–air coflow diffusion flames. The schlieren and PIV images show that the dynamics of the vortices outside the visible...
Gespeichert in:
Veröffentlicht in: | Experimental thermal and fluid science 2012-02, Vol.37, p.84-90 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 90 |
---|---|
container_issue | |
container_start_page | 84 |
container_title | Experimental thermal and fluid science |
container_volume | 37 |
creator | Wang, Q. Gohari Darabkhani, H. Chen, L. Zhang, Y. |
description | In this paper, high speed direct/schlieren imaging system together with Particle Image Velocimetry (PIV) system is applied to investigate the vortex dynamics and structures of methane–air coflow diffusion flames. The schlieren and PIV images show that the dynamics of the vortices outside the visible flame are strongly affected by the coflow air velocity. The coflow air is observed to push the initiation point of toroidal vortices from the nozzle exit to downstream. When the vortices are pushed beyond the visible flame height, the typical flame flickering behavior disappears and the flame becomes stable. The critical air flow rate at which the flame stops oscillating is observed to increase with the fuel flow rate. The visible flame shows no obvious change when the coflow flow rate exceeds a critical value. However, the flow pattern and vortices outside the visible flame keep changing at different air flow rates. The velocity vectors and vorticity contours at different air flow rates are presented and analyzed. The shedding frequency of the toroidal vortex is in good agreement with the flame flickering frequency obtained from a photomultiplier. |
doi_str_mv | 10.1016/j.expthermflusci.2011.10.006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677965807</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0894177711002093</els_id><sourcerecordid>1010885161</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-47e482f40413243f8d34a7e7806c346d5ae60f4f1eb8cbf22e2b8f003abc62df3</originalsourceid><addsrcrecordid>eNqNkMFqGzEQhkVJoU7ad9ChgV7WHmm1kgy9FFOnAUMhJLkusnaEZXZXjqStk7ePjEOhp_Q0h_-bb4afkK8M5gyYXOzn-HzIO4yD66dk_ZwDYyWaA8gPZMa0Wlaca3lBZqCXomJKqU_kMqU9AGjOYEbuHkPM-Ey7l9EM3iZqxo6mHCebp4iJBkcHzDsz4sL4SPeYaeedm5IPI3W9GQpz9HlHT6kNrg_Hz-SjM33CL2_zijysf96vflWb3ze3qx-bygoucyUUCs2dAMFqLmqnu1oYhUqDtLWQXWNQghOO4VbbreMc-VY7gNpsreSdq6_It7P3EMPThCm3g08W-748G6bUMqnUUjYa1PsoMNC6YZIV9PsZtTGkFNG1h-gHE18KdOJku2__bb09tX5KS-tl_frtkknW9C6a0fr018GbpiikKNz6zGFp6I_H2BYTjhY7H9Hmtgv-_w6-AkAIobM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1010885161</pqid></control><display><type>article</type><title>Vortex dynamics and structures of methane/air jet diffusion flames with air coflow</title><source>Elsevier ScienceDirect Journals</source><creator>Wang, Q. ; Gohari Darabkhani, H. ; Chen, L. ; Zhang, Y.</creator><creatorcontrib>Wang, Q. ; Gohari Darabkhani, H. ; Chen, L. ; Zhang, Y.</creatorcontrib><description>In this paper, high speed direct/schlieren imaging system together with Particle Image Velocimetry (PIV) system is applied to investigate the vortex dynamics and structures of methane–air coflow diffusion flames. The schlieren and PIV images show that the dynamics of the vortices outside the visible flame are strongly affected by the coflow air velocity. The coflow air is observed to push the initiation point of toroidal vortices from the nozzle exit to downstream. When the vortices are pushed beyond the visible flame height, the typical flame flickering behavior disappears and the flame becomes stable. The critical air flow rate at which the flame stops oscillating is observed to increase with the fuel flow rate. The visible flame shows no obvious change when the coflow flow rate exceeds a critical value. However, the flow pattern and vortices outside the visible flame keep changing at different air flow rates. The velocity vectors and vorticity contours at different air flow rates are presented and analyzed. The shedding frequency of the toroidal vortex is in good agreement with the flame flickering frequency obtained from a photomultiplier.</description><identifier>ISSN: 0894-1777</identifier><identifier>EISSN: 1879-2286</identifier><identifier>DOI: 10.1016/j.expthermflusci.2011.10.006</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Aerodynamics ; Air flow ; Applied sciences ; Coflow ; Combustion of gaseous fuels ; Combustion. Flame ; Dynamical systems ; Dynamics ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Fluid dynamics ; Fluid flow ; PIV ; Schlieren ; Theoretical studies. Data and constants. Metering ; Vortex dynamics ; Vortices</subject><ispartof>Experimental thermal and fluid science, 2012-02, Vol.37, p.84-90</ispartof><rights>2011 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-47e482f40413243f8d34a7e7806c346d5ae60f4f1eb8cbf22e2b8f003abc62df3</citedby><cites>FETCH-LOGICAL-c426t-47e482f40413243f8d34a7e7806c346d5ae60f4f1eb8cbf22e2b8f003abc62df3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.expthermflusci.2011.10.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25501664$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Q.</creatorcontrib><creatorcontrib>Gohari Darabkhani, H.</creatorcontrib><creatorcontrib>Chen, L.</creatorcontrib><creatorcontrib>Zhang, Y.</creatorcontrib><title>Vortex dynamics and structures of methane/air jet diffusion flames with air coflow</title><title>Experimental thermal and fluid science</title><description>In this paper, high speed direct/schlieren imaging system together with Particle Image Velocimetry (PIV) system is applied to investigate the vortex dynamics and structures of methane–air coflow diffusion flames. The schlieren and PIV images show that the dynamics of the vortices outside the visible flame are strongly affected by the coflow air velocity. The coflow air is observed to push the initiation point of toroidal vortices from the nozzle exit to downstream. When the vortices are pushed beyond the visible flame height, the typical flame flickering behavior disappears and the flame becomes stable. The critical air flow rate at which the flame stops oscillating is observed to increase with the fuel flow rate. The visible flame shows no obvious change when the coflow flow rate exceeds a critical value. However, the flow pattern and vortices outside the visible flame keep changing at different air flow rates. The velocity vectors and vorticity contours at different air flow rates are presented and analyzed. The shedding frequency of the toroidal vortex is in good agreement with the flame flickering frequency obtained from a photomultiplier.</description><subject>Aerodynamics</subject><subject>Air flow</subject><subject>Applied sciences</subject><subject>Coflow</subject><subject>Combustion of gaseous fuels</subject><subject>Combustion. Flame</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>PIV</subject><subject>Schlieren</subject><subject>Theoretical studies. Data and constants. Metering</subject><subject>Vortex dynamics</subject><subject>Vortices</subject><issn>0894-1777</issn><issn>1879-2286</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqNkMFqGzEQhkVJoU7ad9ChgV7WHmm1kgy9FFOnAUMhJLkusnaEZXZXjqStk7ePjEOhp_Q0h_-bb4afkK8M5gyYXOzn-HzIO4yD66dk_ZwDYyWaA8gPZMa0Wlaca3lBZqCXomJKqU_kMqU9AGjOYEbuHkPM-Ey7l9EM3iZqxo6mHCebp4iJBkcHzDsz4sL4SPeYaeedm5IPI3W9GQpz9HlHT6kNrg_Hz-SjM33CL2_zijysf96vflWb3ze3qx-bygoucyUUCs2dAMFqLmqnu1oYhUqDtLWQXWNQghOO4VbbreMc-VY7gNpsreSdq6_It7P3EMPThCm3g08W-748G6bUMqnUUjYa1PsoMNC6YZIV9PsZtTGkFNG1h-gHE18KdOJku2__bb09tX5KS-tl_frtkknW9C6a0fr018GbpiikKNz6zGFp6I_H2BYTjhY7H9Hmtgv-_w6-AkAIobM</recordid><startdate>20120201</startdate><enddate>20120201</enddate><creator>Wang, Q.</creator><creator>Gohari Darabkhani, H.</creator><creator>Chen, L.</creator><creator>Zhang, Y.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20120201</creationdate><title>Vortex dynamics and structures of methane/air jet diffusion flames with air coflow</title><author>Wang, Q. ; Gohari Darabkhani, H. ; Chen, L. ; Zhang, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-47e482f40413243f8d34a7e7806c346d5ae60f4f1eb8cbf22e2b8f003abc62df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Aerodynamics</topic><topic>Air flow</topic><topic>Applied sciences</topic><topic>Coflow</topic><topic>Combustion of gaseous fuels</topic><topic>Combustion. Flame</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>PIV</topic><topic>Schlieren</topic><topic>Theoretical studies. Data and constants. Metering</topic><topic>Vortex dynamics</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Q.</creatorcontrib><creatorcontrib>Gohari Darabkhani, H.</creatorcontrib><creatorcontrib>Chen, L.</creatorcontrib><creatorcontrib>Zhang, Y.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Experimental thermal and fluid science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Q.</au><au>Gohari Darabkhani, H.</au><au>Chen, L.</au><au>Zhang, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vortex dynamics and structures of methane/air jet diffusion flames with air coflow</atitle><jtitle>Experimental thermal and fluid science</jtitle><date>2012-02-01</date><risdate>2012</risdate><volume>37</volume><spage>84</spage><epage>90</epage><pages>84-90</pages><issn>0894-1777</issn><eissn>1879-2286</eissn><abstract>In this paper, high speed direct/schlieren imaging system together with Particle Image Velocimetry (PIV) system is applied to investigate the vortex dynamics and structures of methane–air coflow diffusion flames. The schlieren and PIV images show that the dynamics of the vortices outside the visible flame are strongly affected by the coflow air velocity. The coflow air is observed to push the initiation point of toroidal vortices from the nozzle exit to downstream. When the vortices are pushed beyond the visible flame height, the typical flame flickering behavior disappears and the flame becomes stable. The critical air flow rate at which the flame stops oscillating is observed to increase with the fuel flow rate. The visible flame shows no obvious change when the coflow flow rate exceeds a critical value. However, the flow pattern and vortices outside the visible flame keep changing at different air flow rates. The velocity vectors and vorticity contours at different air flow rates are presented and analyzed. The shedding frequency of the toroidal vortex is in good agreement with the flame flickering frequency obtained from a photomultiplier.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.expthermflusci.2011.10.006</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0894-1777 |
ispartof | Experimental thermal and fluid science, 2012-02, Vol.37, p.84-90 |
issn | 0894-1777 1879-2286 |
language | eng |
recordid | cdi_proquest_miscellaneous_1677965807 |
source | Elsevier ScienceDirect Journals |
subjects | Aerodynamics Air flow Applied sciences Coflow Combustion of gaseous fuels Combustion. Flame Dynamical systems Dynamics Energy Energy. Thermal use of fuels Exact sciences and technology Fluid dynamics Fluid flow PIV Schlieren Theoretical studies. Data and constants. Metering Vortex dynamics Vortices |
title | Vortex dynamics and structures of methane/air jet diffusion flames with air coflow |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T11%3A20%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vortex%20dynamics%20and%20structures%20of%20methane/air%20jet%20diffusion%20flames%20with%20air%20coflow&rft.jtitle=Experimental%20thermal%20and%20fluid%20science&rft.au=Wang,%20Q.&rft.date=2012-02-01&rft.volume=37&rft.spage=84&rft.epage=90&rft.pages=84-90&rft.issn=0894-1777&rft.eissn=1879-2286&rft_id=info:doi/10.1016/j.expthermflusci.2011.10.006&rft_dat=%3Cproquest_cross%3E1010885161%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1010885161&rft_id=info:pmid/&rft_els_id=S0894177711002093&rfr_iscdi=true |