Exploration of ion migration mechanism and diffusion capability for Na sub(3)V sub(2)(PO sub(4)) sub(2)F sub(3) cathode utilized in rechargeable sodium-ion batteries

NASICON-type Na sub(3)V sub(2)(PO sub(4)) sub(2)F sub(3) is employed as a promising cathode for sodium-ion batteries in order to explore the ion-migration mechanism and diffusion capability. Two kinds of Na sites, namely Na(1) site and Na(2) site exist in the crystal structure per formula unit to ac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of power sources 2014-06, Vol.256, p.258-263
Hauptverfasser: Song, Weixin, Ji, Xiaobo, Wu, Zhengping, Yang, Yingchang, Zhou, Zhou, Li, Fangqian, Chen, Qiyuan, Banks, Craig E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 263
container_issue
container_start_page 258
container_title Journal of power sources
container_volume 256
creator Song, Weixin
Ji, Xiaobo
Wu, Zhengping
Yang, Yingchang
Zhou, Zhou
Li, Fangqian
Chen, Qiyuan
Banks, Craig E
description NASICON-type Na sub(3)V sub(2)(PO sub(4)) sub(2)F sub(3) is employed as a promising cathode for sodium-ion batteries in order to explore the ion-migration mechanism and diffusion capability. Two kinds of Na sites, namely Na(1) site and Na(2) site exist in the crystal structure per formula unit to accommodate a total of three sodium ions. The ion at Na(2) site with half occupation extracts first and inserts the last due to its high chemical potential, while the whole extraction/insertion of two ions between 1.6 and 4.6 V vs. Na+/Na can produce three plateaus in charge/discharge processes because of the reorganization of ions. The first discharge capacity of 111.6 mAh g super(-1) with retention of 97.6% after 50 cycles could be obtained by electrochemical testing at 0.091C. Electrochemical activation and/or structural reorganization of the system by cycling could improve the diffusion coefficient of sodium with a comparatively large magnitude of 10 super(-12) cm super(2) s super(-1), though many influences on the resistance factors also can be attributed to the cycling process. Such work is of fundamental importance to the progression of sodium-based batteries to be fully realized and be implemented over existing Li-ion based batteries.
doi_str_mv 10.1016/j.jpowsour.2014.01.025
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677963164</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1677963164</sourcerecordid><originalsourceid>FETCH-LOGICAL-p664-59bcc60a4955c81281551e63d5a5e2ef1573cfe7554bcef89bb2ced8f6b1582b3</originalsourceid><addsrcrecordid>eNqFjb1OwzAUhT2ARCm8AvLYDAl2HNvJiKoWkCrKULFWtnPdukriECfi5314T5rSnem7-nTOPQjdUZJQQsX9ITm0_iP4oUtSQrOE0ISk_AJNCJN5LCVnV-g6hAMhhFJJJuhn8dlWvlO98w32Fo-o3e4sajB71bhQY9WUuHTWDmH0RrVKu8r1X9j6Dr8oHAY9Y9HbiWk0e12friyKzmZ5Thyr_d6XgIf-2P-GErsGd-NMtwOlK8DBl26o43FGq76HzkG4QZdWVQFuz5yizXKxmT_Fq_Xj8_xhFbdCZDEvtDGCqKzg3OQ0zSnnFAQrueKQgqVcMmNBcp5pAzYvtE4NlLkVmvI81WyKZn9v286_DxD6be2CgapSDfghbKmQshCMiuz_KOeFEITmGfsFXTF-ng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1559660184</pqid></control><display><type>article</type><title>Exploration of ion migration mechanism and diffusion capability for Na sub(3)V sub(2)(PO sub(4)) sub(2)F sub(3) cathode utilized in rechargeable sodium-ion batteries</title><source>Elsevier ScienceDirect Journals</source><creator>Song, Weixin ; Ji, Xiaobo ; Wu, Zhengping ; Yang, Yingchang ; Zhou, Zhou ; Li, Fangqian ; Chen, Qiyuan ; Banks, Craig E</creator><creatorcontrib>Song, Weixin ; Ji, Xiaobo ; Wu, Zhengping ; Yang, Yingchang ; Zhou, Zhou ; Li, Fangqian ; Chen, Qiyuan ; Banks, Craig E</creatorcontrib><description>NASICON-type Na sub(3)V sub(2)(PO sub(4)) sub(2)F sub(3) is employed as a promising cathode for sodium-ion batteries in order to explore the ion-migration mechanism and diffusion capability. Two kinds of Na sites, namely Na(1) site and Na(2) site exist in the crystal structure per formula unit to accommodate a total of three sodium ions. The ion at Na(2) site with half occupation extracts first and inserts the last due to its high chemical potential, while the whole extraction/insertion of two ions between 1.6 and 4.6 V vs. Na+/Na can produce three plateaus in charge/discharge processes because of the reorganization of ions. The first discharge capacity of 111.6 mAh g super(-1) with retention of 97.6% after 50 cycles could be obtained by electrochemical testing at 0.091C. Electrochemical activation and/or structural reorganization of the system by cycling could improve the diffusion coefficient of sodium with a comparatively large magnitude of 10 super(-12) cm super(2) s super(-1), though many influences on the resistance factors also can be attributed to the cycling process. Such work is of fundamental importance to the progression of sodium-based batteries to be fully realized and be implemented over existing Li-ion based batteries.</description><identifier>ISSN: 0378-7753</identifier><identifier>DOI: 10.1016/j.jpowsour.2014.01.025</identifier><language>eng</language><subject>Cathodes ; Chemical potential ; Cycles ; Diffusion ; Discharge ; Electric batteries ; Lithium batteries ; Sodium</subject><ispartof>Journal of power sources, 2014-06, Vol.256, p.258-263</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Song, Weixin</creatorcontrib><creatorcontrib>Ji, Xiaobo</creatorcontrib><creatorcontrib>Wu, Zhengping</creatorcontrib><creatorcontrib>Yang, Yingchang</creatorcontrib><creatorcontrib>Zhou, Zhou</creatorcontrib><creatorcontrib>Li, Fangqian</creatorcontrib><creatorcontrib>Chen, Qiyuan</creatorcontrib><creatorcontrib>Banks, Craig E</creatorcontrib><title>Exploration of ion migration mechanism and diffusion capability for Na sub(3)V sub(2)(PO sub(4)) sub(2)F sub(3) cathode utilized in rechargeable sodium-ion batteries</title><title>Journal of power sources</title><description>NASICON-type Na sub(3)V sub(2)(PO sub(4)) sub(2)F sub(3) is employed as a promising cathode for sodium-ion batteries in order to explore the ion-migration mechanism and diffusion capability. Two kinds of Na sites, namely Na(1) site and Na(2) site exist in the crystal structure per formula unit to accommodate a total of three sodium ions. The ion at Na(2) site with half occupation extracts first and inserts the last due to its high chemical potential, while the whole extraction/insertion of two ions between 1.6 and 4.6 V vs. Na+/Na can produce three plateaus in charge/discharge processes because of the reorganization of ions. The first discharge capacity of 111.6 mAh g super(-1) with retention of 97.6% after 50 cycles could be obtained by electrochemical testing at 0.091C. Electrochemical activation and/or structural reorganization of the system by cycling could improve the diffusion coefficient of sodium with a comparatively large magnitude of 10 super(-12) cm super(2) s super(-1), though many influences on the resistance factors also can be attributed to the cycling process. Such work is of fundamental importance to the progression of sodium-based batteries to be fully realized and be implemented over existing Li-ion based batteries.</description><subject>Cathodes</subject><subject>Chemical potential</subject><subject>Cycles</subject><subject>Diffusion</subject><subject>Discharge</subject><subject>Electric batteries</subject><subject>Lithium batteries</subject><subject>Sodium</subject><issn>0378-7753</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFjb1OwzAUhT2ARCm8AvLYDAl2HNvJiKoWkCrKULFWtnPdukriECfi5314T5rSnem7-nTOPQjdUZJQQsX9ITm0_iP4oUtSQrOE0ISk_AJNCJN5LCVnV-g6hAMhhFJJJuhn8dlWvlO98w32Fo-o3e4sajB71bhQY9WUuHTWDmH0RrVKu8r1X9j6Dr8oHAY9Y9HbiWk0e12friyKzmZ5Thyr_d6XgIf-2P-GErsGd-NMtwOlK8DBl26o43FGq76HzkG4QZdWVQFuz5yizXKxmT_Fq_Xj8_xhFbdCZDEvtDGCqKzg3OQ0zSnnFAQrueKQgqVcMmNBcp5pAzYvtE4NlLkVmvI81WyKZn9v286_DxD6be2CgapSDfghbKmQshCMiuz_KOeFEITmGfsFXTF-ng</recordid><startdate>20140615</startdate><enddate>20140615</enddate><creator>Song, Weixin</creator><creator>Ji, Xiaobo</creator><creator>Wu, Zhengping</creator><creator>Yang, Yingchang</creator><creator>Zhou, Zhou</creator><creator>Li, Fangqian</creator><creator>Chen, Qiyuan</creator><creator>Banks, Craig E</creator><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20140615</creationdate><title>Exploration of ion migration mechanism and diffusion capability for Na sub(3)V sub(2)(PO sub(4)) sub(2)F sub(3) cathode utilized in rechargeable sodium-ion batteries</title><author>Song, Weixin ; Ji, Xiaobo ; Wu, Zhengping ; Yang, Yingchang ; Zhou, Zhou ; Li, Fangqian ; Chen, Qiyuan ; Banks, Craig E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p664-59bcc60a4955c81281551e63d5a5e2ef1573cfe7554bcef89bb2ced8f6b1582b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Cathodes</topic><topic>Chemical potential</topic><topic>Cycles</topic><topic>Diffusion</topic><topic>Discharge</topic><topic>Electric batteries</topic><topic>Lithium batteries</topic><topic>Sodium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Weixin</creatorcontrib><creatorcontrib>Ji, Xiaobo</creatorcontrib><creatorcontrib>Wu, Zhengping</creatorcontrib><creatorcontrib>Yang, Yingchang</creatorcontrib><creatorcontrib>Zhou, Zhou</creatorcontrib><creatorcontrib>Li, Fangqian</creatorcontrib><creatorcontrib>Chen, Qiyuan</creatorcontrib><creatorcontrib>Banks, Craig E</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Weixin</au><au>Ji, Xiaobo</au><au>Wu, Zhengping</au><au>Yang, Yingchang</au><au>Zhou, Zhou</au><au>Li, Fangqian</au><au>Chen, Qiyuan</au><au>Banks, Craig E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploration of ion migration mechanism and diffusion capability for Na sub(3)V sub(2)(PO sub(4)) sub(2)F sub(3) cathode utilized in rechargeable sodium-ion batteries</atitle><jtitle>Journal of power sources</jtitle><date>2014-06-15</date><risdate>2014</risdate><volume>256</volume><spage>258</spage><epage>263</epage><pages>258-263</pages><issn>0378-7753</issn><abstract>NASICON-type Na sub(3)V sub(2)(PO sub(4)) sub(2)F sub(3) is employed as a promising cathode for sodium-ion batteries in order to explore the ion-migration mechanism and diffusion capability. Two kinds of Na sites, namely Na(1) site and Na(2) site exist in the crystal structure per formula unit to accommodate a total of three sodium ions. The ion at Na(2) site with half occupation extracts first and inserts the last due to its high chemical potential, while the whole extraction/insertion of two ions between 1.6 and 4.6 V vs. Na+/Na can produce three plateaus in charge/discharge processes because of the reorganization of ions. The first discharge capacity of 111.6 mAh g super(-1) with retention of 97.6% after 50 cycles could be obtained by electrochemical testing at 0.091C. Electrochemical activation and/or structural reorganization of the system by cycling could improve the diffusion coefficient of sodium with a comparatively large magnitude of 10 super(-12) cm super(2) s super(-1), though many influences on the resistance factors also can be attributed to the cycling process. Such work is of fundamental importance to the progression of sodium-based batteries to be fully realized and be implemented over existing Li-ion based batteries.</abstract><doi>10.1016/j.jpowsour.2014.01.025</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0378-7753
ispartof Journal of power sources, 2014-06, Vol.256, p.258-263
issn 0378-7753
language eng
recordid cdi_proquest_miscellaneous_1677963164
source Elsevier ScienceDirect Journals
subjects Cathodes
Chemical potential
Cycles
Diffusion
Discharge
Electric batteries
Lithium batteries
Sodium
title Exploration of ion migration mechanism and diffusion capability for Na sub(3)V sub(2)(PO sub(4)) sub(2)F sub(3) cathode utilized in rechargeable sodium-ion batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T17%3A44%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploration%20of%20ion%20migration%20mechanism%20and%20diffusion%20capability%20for%20Na%20sub(3)V%20sub(2)(PO%20sub(4))%20sub(2)F%20sub(3)%20cathode%20utilized%20in%20rechargeable%20sodium-ion%20batteries&rft.jtitle=Journal%20of%20power%20sources&rft.au=Song,%20Weixin&rft.date=2014-06-15&rft.volume=256&rft.spage=258&rft.epage=263&rft.pages=258-263&rft.issn=0378-7753&rft_id=info:doi/10.1016/j.jpowsour.2014.01.025&rft_dat=%3Cproquest%3E1677963164%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1559660184&rft_id=info:pmid/&rfr_iscdi=true