Rheological contrast between serpentine species and implications for slab–mantle wedge decoupling

Serpentine is considered the main hydrous mineral to cause significant weakening at the slab–mantle interface; however, despite the possible presence of lizardite/chrysotile (liz/ctl) and antigorite (i.e., low- and high-temperature serpentine species, respectively) at the base of the mantle wedge, t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Tectonophysics 2013-11, Vol.608, p.545-551
Hauptverfasser: Hirauchi, Ken-ichi, Katayama, Ikuo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 551
container_issue
container_start_page 545
container_title Tectonophysics
container_volume 608
creator Hirauchi, Ken-ichi
Katayama, Ikuo
description Serpentine is considered the main hydrous mineral to cause significant weakening at the slab–mantle interface; however, despite the possible presence of lizardite/chrysotile (liz/ctl) and antigorite (i.e., low- and high-temperature serpentine species, respectively) at the base of the mantle wedge, the differences in rheological properties between these two serpentine types are poorly understood. To investigate the effect of serpentine speciation on slab–mantle decoupling, we performed a series of two-layer shear deformation experiments on liz/ctl, antigorite, and olivine at P=1GPa and T=250–300°C, using a Griggs-type solid-medium apparatus. With increasing shear strain (γ up to ~5), the liz/ctl and antigorite samples evolved to deform predominantly by slip or glide on the (001) basal plane, whereas the olivine sample deformed by a combination of brittle and crystal-plastic mechanisms. The contrasting amount of rotation of strain markers between layers demonstrates that the shear strain of liz/ctl is significantly lower than that of antigorite, possibly arising from differences in interlayer bond strength. The strain contrasts between serpentines and olivine were γliz/ctl/γol=9–12 and γatg/γol=1–2. Our results indicate that assuming a thin, serpentinized layer upon a subducting slab, significant decoupling can occur only where liz/ctl is stable in the layer. Thus, the distribution of serpentine species in the hydrated mantle wedge is a critical factor that controls the degree of decoupling along the slab–wedge interface, at depths below the seismogenic zone. •We simultaneously deformed lizardite/chrysotile and antigorite in simple shear.•Lizardite/chrysotile is much weaker than antigorite at mantle wedge conditions.•The serpentine specimens deform predominantly by slip on the basal plane.•Plasticity of antigorite is not the main reason for slab–mantle decoupling.
doi_str_mv 10.1016/j.tecto.2013.08.027
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677962194</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0040195113005180</els_id><sourcerecordid>1677962194</sourcerecordid><originalsourceid>FETCH-LOGICAL-a458t-c3fab2b27d8bf47089dd78ed4483e041177e61d8f58ae0412f38323cf08b74c53</originalsourceid><addsrcrecordid>eNqFkMFu1DAQQC0EEsvCF3DxkUvCOHZs58ABVaVUqlSpKmfLsSeLV1k72N5W3PgH_pAvIdvlTE_WSO_NyI-Q9wxaBkx-3LcVXU1tB4y3oFvo1AuyYVoNDe-kfEk2AAIaNvTsNXlTyh4AJOvlhri775jmtAvOztSlWLMtlY5YHxEjLZgXjDVEpGVBF7BQGz0Nh2VehRpSLHRKmZbZjn9-_T7YWGekj-h3SD26dFy5uHtLXk12Lvju37sl375c3l98bW5ur64vPt80VvS6No5PduzGTnk9TkKBHrxXGr0QmiMIxpRCybyeem1PczdxzTvuJtCjEq7nW_LhvHfJ6ccRSzWHUBzOs42YjsUwqdQgOzaI59FesNNFkCvKz6jLqZSMk1lyONj80zAwp_pmb57qm1N9A9qs9Vfr09nC9cMPAbMpa77o0Ie8wsan8F__L6Z5kUE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1541411706</pqid></control><display><type>article</type><title>Rheological contrast between serpentine species and implications for slab–mantle wedge decoupling</title><source>Elsevier ScienceDirect Journals</source><creator>Hirauchi, Ken-ichi ; Katayama, Ikuo</creator><creatorcontrib>Hirauchi, Ken-ichi ; Katayama, Ikuo</creatorcontrib><description>Serpentine is considered the main hydrous mineral to cause significant weakening at the slab–mantle interface; however, despite the possible presence of lizardite/chrysotile (liz/ctl) and antigorite (i.e., low- and high-temperature serpentine species, respectively) at the base of the mantle wedge, the differences in rheological properties between these two serpentine types are poorly understood. To investigate the effect of serpentine speciation on slab–mantle decoupling, we performed a series of two-layer shear deformation experiments on liz/ctl, antigorite, and olivine at P=1GPa and T=250–300°C, using a Griggs-type solid-medium apparatus. With increasing shear strain (γ up to ~5), the liz/ctl and antigorite samples evolved to deform predominantly by slip or glide on the (001) basal plane, whereas the olivine sample deformed by a combination of brittle and crystal-plastic mechanisms. The contrasting amount of rotation of strain markers between layers demonstrates that the shear strain of liz/ctl is significantly lower than that of antigorite, possibly arising from differences in interlayer bond strength. The strain contrasts between serpentines and olivine were γliz/ctl/γol=9–12 and γatg/γol=1–2. Our results indicate that assuming a thin, serpentinized layer upon a subducting slab, significant decoupling can occur only where liz/ctl is stable in the layer. Thus, the distribution of serpentine species in the hydrated mantle wedge is a critical factor that controls the degree of decoupling along the slab–wedge interface, at depths below the seismogenic zone. •We simultaneously deformed lizardite/chrysotile and antigorite in simple shear.•Lizardite/chrysotile is much weaker than antigorite at mantle wedge conditions.•The serpentine specimens deform predominantly by slip on the basal plane.•Plasticity of antigorite is not the main reason for slab–mantle decoupling.</description><identifier>ISSN: 0040-1951</identifier><identifier>EISSN: 1879-3266</identifier><identifier>DOI: 10.1016/j.tecto.2013.08.027</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Decoupling ; Deformation mechanisms ; Mantle ; Mantle wedge ; Olivine ; Rheological contrast ; Rheological properties ; Serpentine ; Shear strain ; Subduction zone ; Wedges</subject><ispartof>Tectonophysics, 2013-11, Vol.608, p.545-551</ispartof><rights>2013 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a458t-c3fab2b27d8bf47089dd78ed4483e041177e61d8f58ae0412f38323cf08b74c53</citedby><cites>FETCH-LOGICAL-a458t-c3fab2b27d8bf47089dd78ed4483e041177e61d8f58ae0412f38323cf08b74c53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.tecto.2013.08.027$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids></links><search><creatorcontrib>Hirauchi, Ken-ichi</creatorcontrib><creatorcontrib>Katayama, Ikuo</creatorcontrib><title>Rheological contrast between serpentine species and implications for slab–mantle wedge decoupling</title><title>Tectonophysics</title><description>Serpentine is considered the main hydrous mineral to cause significant weakening at the slab–mantle interface; however, despite the possible presence of lizardite/chrysotile (liz/ctl) and antigorite (i.e., low- and high-temperature serpentine species, respectively) at the base of the mantle wedge, the differences in rheological properties between these two serpentine types are poorly understood. To investigate the effect of serpentine speciation on slab–mantle decoupling, we performed a series of two-layer shear deformation experiments on liz/ctl, antigorite, and olivine at P=1GPa and T=250–300°C, using a Griggs-type solid-medium apparatus. With increasing shear strain (γ up to ~5), the liz/ctl and antigorite samples evolved to deform predominantly by slip or glide on the (001) basal plane, whereas the olivine sample deformed by a combination of brittle and crystal-plastic mechanisms. The contrasting amount of rotation of strain markers between layers demonstrates that the shear strain of liz/ctl is significantly lower than that of antigorite, possibly arising from differences in interlayer bond strength. The strain contrasts between serpentines and olivine were γliz/ctl/γol=9–12 and γatg/γol=1–2. Our results indicate that assuming a thin, serpentinized layer upon a subducting slab, significant decoupling can occur only where liz/ctl is stable in the layer. Thus, the distribution of serpentine species in the hydrated mantle wedge is a critical factor that controls the degree of decoupling along the slab–wedge interface, at depths below the seismogenic zone. •We simultaneously deformed lizardite/chrysotile and antigorite in simple shear.•Lizardite/chrysotile is much weaker than antigorite at mantle wedge conditions.•The serpentine specimens deform predominantly by slip on the basal plane.•Plasticity of antigorite is not the main reason for slab–mantle decoupling.</description><subject>Decoupling</subject><subject>Deformation mechanisms</subject><subject>Mantle</subject><subject>Mantle wedge</subject><subject>Olivine</subject><subject>Rheological contrast</subject><subject>Rheological properties</subject><subject>Serpentine</subject><subject>Shear strain</subject><subject>Subduction zone</subject><subject>Wedges</subject><issn>0040-1951</issn><issn>1879-3266</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkMFu1DAQQC0EEsvCF3DxkUvCOHZs58ABVaVUqlSpKmfLsSeLV1k72N5W3PgH_pAvIdvlTE_WSO_NyI-Q9wxaBkx-3LcVXU1tB4y3oFvo1AuyYVoNDe-kfEk2AAIaNvTsNXlTyh4AJOvlhri775jmtAvOztSlWLMtlY5YHxEjLZgXjDVEpGVBF7BQGz0Nh2VehRpSLHRKmZbZjn9-_T7YWGekj-h3SD26dFy5uHtLXk12Lvju37sl375c3l98bW5ur64vPt80VvS6No5PduzGTnk9TkKBHrxXGr0QmiMIxpRCybyeem1PczdxzTvuJtCjEq7nW_LhvHfJ6ccRSzWHUBzOs42YjsUwqdQgOzaI59FesNNFkCvKz6jLqZSMk1lyONj80zAwp_pmb57qm1N9A9qs9Vfr09nC9cMPAbMpa77o0Ie8wsan8F__L6Z5kUE</recordid><startdate>20131126</startdate><enddate>20131126</enddate><creator>Hirauchi, Ken-ichi</creator><creator>Katayama, Ikuo</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20131126</creationdate><title>Rheological contrast between serpentine species and implications for slab–mantle wedge decoupling</title><author>Hirauchi, Ken-ichi ; Katayama, Ikuo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a458t-c3fab2b27d8bf47089dd78ed4483e041177e61d8f58ae0412f38323cf08b74c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Decoupling</topic><topic>Deformation mechanisms</topic><topic>Mantle</topic><topic>Mantle wedge</topic><topic>Olivine</topic><topic>Rheological contrast</topic><topic>Rheological properties</topic><topic>Serpentine</topic><topic>Shear strain</topic><topic>Subduction zone</topic><topic>Wedges</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hirauchi, Ken-ichi</creatorcontrib><creatorcontrib>Katayama, Ikuo</creatorcontrib><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Tectonophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hirauchi, Ken-ichi</au><au>Katayama, Ikuo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rheological contrast between serpentine species and implications for slab–mantle wedge decoupling</atitle><jtitle>Tectonophysics</jtitle><date>2013-11-26</date><risdate>2013</risdate><volume>608</volume><spage>545</spage><epage>551</epage><pages>545-551</pages><issn>0040-1951</issn><eissn>1879-3266</eissn><abstract>Serpentine is considered the main hydrous mineral to cause significant weakening at the slab–mantle interface; however, despite the possible presence of lizardite/chrysotile (liz/ctl) and antigorite (i.e., low- and high-temperature serpentine species, respectively) at the base of the mantle wedge, the differences in rheological properties between these two serpentine types are poorly understood. To investigate the effect of serpentine speciation on slab–mantle decoupling, we performed a series of two-layer shear deformation experiments on liz/ctl, antigorite, and olivine at P=1GPa and T=250–300°C, using a Griggs-type solid-medium apparatus. With increasing shear strain (γ up to ~5), the liz/ctl and antigorite samples evolved to deform predominantly by slip or glide on the (001) basal plane, whereas the olivine sample deformed by a combination of brittle and crystal-plastic mechanisms. The contrasting amount of rotation of strain markers between layers demonstrates that the shear strain of liz/ctl is significantly lower than that of antigorite, possibly arising from differences in interlayer bond strength. The strain contrasts between serpentines and olivine were γliz/ctl/γol=9–12 and γatg/γol=1–2. Our results indicate that assuming a thin, serpentinized layer upon a subducting slab, significant decoupling can occur only where liz/ctl is stable in the layer. Thus, the distribution of serpentine species in the hydrated mantle wedge is a critical factor that controls the degree of decoupling along the slab–wedge interface, at depths below the seismogenic zone. •We simultaneously deformed lizardite/chrysotile and antigorite in simple shear.•Lizardite/chrysotile is much weaker than antigorite at mantle wedge conditions.•The serpentine specimens deform predominantly by slip on the basal plane.•Plasticity of antigorite is not the main reason for slab–mantle decoupling.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.tecto.2013.08.027</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0040-1951
ispartof Tectonophysics, 2013-11, Vol.608, p.545-551
issn 0040-1951
1879-3266
language eng
recordid cdi_proquest_miscellaneous_1677962194
source Elsevier ScienceDirect Journals
subjects Decoupling
Deformation mechanisms
Mantle
Mantle wedge
Olivine
Rheological contrast
Rheological properties
Serpentine
Shear strain
Subduction zone
Wedges
title Rheological contrast between serpentine species and implications for slab–mantle wedge decoupling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T02%3A53%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rheological%20contrast%20between%20serpentine%20species%20and%20implications%20for%20slab%E2%80%93mantle%20wedge%20decoupling&rft.jtitle=Tectonophysics&rft.au=Hirauchi,%20Ken-ichi&rft.date=2013-11-26&rft.volume=608&rft.spage=545&rft.epage=551&rft.pages=545-551&rft.issn=0040-1951&rft.eissn=1879-3266&rft_id=info:doi/10.1016/j.tecto.2013.08.027&rft_dat=%3Cproquest_cross%3E1677962194%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1541411706&rft_id=info:pmid/&rft_els_id=S0040195113005180&rfr_iscdi=true