Approximate Solution of Two-Dimensional Nonlinear Wave Equation by Optimal Homotopy Asymptotic Method

The two-dimensional nonlinear wave equations are considered. Solution to the problem is approximated by using optimal homotopy asymptotic method (OHAM). The residual and convergence of the proposed method to nonlinear wave equation are presented through graphs. The resultant analytic series solution...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2015-01, Vol.2015 (2015), p.1-7
Hauptverfasser: Khan, Ilyas, Abdelhameed, Tarek Nabil Ahmed, Ching, Dennis Ling Chuan, Islam, S., Ullah, Hakeem, Fiza, Mehreen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7
container_issue 2015
container_start_page 1
container_title Mathematical problems in engineering
container_volume 2015
creator Khan, Ilyas
Abdelhameed, Tarek Nabil Ahmed
Ching, Dennis Ling Chuan
Islam, S.
Ullah, Hakeem
Fiza, Mehreen
description The two-dimensional nonlinear wave equations are considered. Solution to the problem is approximated by using optimal homotopy asymptotic method (OHAM). The residual and convergence of the proposed method to nonlinear wave equation are presented through graphs. The resultant analytic series solution of the two-dimensional nonlinear wave equation shows the effectiveness of the proposed method. The comparison of results has been made with the existing results available in the literature.
doi_str_mv 10.1155/2015/380104
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677961616</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3617729631</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-160414d106d54c1e55fa77db1636b52364b364e0fda3fbdca78a1ec32b3f57ed3</originalsourceid><addsrcrecordid>eNqF0EtLxDAUBeAgCj5X7iXgRpRqbtMkneUwjg8YdaGiu5K2t9ihbTpNqvbfm7EuxI2EkBC-XDiHkENg5wBCXIQMxAWPGbBog-yAkDwQEKlNf2dhFEDIX7fJrrVLxkIQEO8QnLZtZz7LWjukj6bqXWkaagr69GGCy7LGxvoHXdF701Rlg7qjL_od6XzV62-aDvShdf5_RW9MbZxpBzq1Q90648qM3qF7M_k-2Sp0ZfHg59wjz1fzp9lNsHi4vp1NF0HG44kLQLIIohyYzEWUAQpRaKXyFCSXqQi5jFK_kRW55kWaZ1rFGjDjYcoLoTDne-RknOszrXq0LqlLm2FV6QZNbxOQSk0k-OXp8R-6NH3nk66VBM5UHDOvzkaVdcbaDouk7XzWbkiAJevKk3XlyVi516ejfiubXH-U_-CjEaMnWOhfWHEpOf8CR2WKhA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1661307880</pqid></control><display><type>article</type><title>Approximate Solution of Two-Dimensional Nonlinear Wave Equation by Optimal Homotopy Asymptotic Method</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Online Library Open Access</source><source>Alma/SFX Local Collection</source><creator>Khan, Ilyas ; Abdelhameed, Tarek Nabil Ahmed ; Ching, Dennis Ling Chuan ; Islam, S. ; Ullah, Hakeem ; Fiza, Mehreen</creator><contributor>Kar, Haranath</contributor><creatorcontrib>Khan, Ilyas ; Abdelhameed, Tarek Nabil Ahmed ; Ching, Dennis Ling Chuan ; Islam, S. ; Ullah, Hakeem ; Fiza, Mehreen ; Kar, Haranath</creatorcontrib><description>The two-dimensional nonlinear wave equations are considered. Solution to the problem is approximated by using optimal homotopy asymptotic method (OHAM). The residual and convergence of the proposed method to nonlinear wave equation are presented through graphs. The resultant analytic series solution of the two-dimensional nonlinear wave equation shows the effectiveness of the proposed method. The comparison of results has been made with the existing results available in the literature.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2015/380104</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Approximation ; Asymptotic methods ; Asymptotic series ; Convergence ; Mathematical analysis ; Mathematical problems ; Nonlinearity ; Optimization ; Partial differential equations ; Two dimensional ; Two dimensional analysis ; Wave equations</subject><ispartof>Mathematical problems in engineering, 2015-01, Vol.2015 (2015), p.1-7</ispartof><rights>Copyright © 2015 H. Ullah et al.</rights><rights>Copyright © 2015 H. Ullah et al. H. Ullah et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-160414d106d54c1e55fa77db1636b52364b364e0fda3fbdca78a1ec32b3f57ed3</citedby><cites>FETCH-LOGICAL-c389t-160414d106d54c1e55fa77db1636b52364b364e0fda3fbdca78a1ec32b3f57ed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><contributor>Kar, Haranath</contributor><creatorcontrib>Khan, Ilyas</creatorcontrib><creatorcontrib>Abdelhameed, Tarek Nabil Ahmed</creatorcontrib><creatorcontrib>Ching, Dennis Ling Chuan</creatorcontrib><creatorcontrib>Islam, S.</creatorcontrib><creatorcontrib>Ullah, Hakeem</creatorcontrib><creatorcontrib>Fiza, Mehreen</creatorcontrib><title>Approximate Solution of Two-Dimensional Nonlinear Wave Equation by Optimal Homotopy Asymptotic Method</title><title>Mathematical problems in engineering</title><description>The two-dimensional nonlinear wave equations are considered. Solution to the problem is approximated by using optimal homotopy asymptotic method (OHAM). The residual and convergence of the proposed method to nonlinear wave equation are presented through graphs. The resultant analytic series solution of the two-dimensional nonlinear wave equation shows the effectiveness of the proposed method. The comparison of results has been made with the existing results available in the literature.</description><subject>Approximation</subject><subject>Asymptotic methods</subject><subject>Asymptotic series</subject><subject>Convergence</subject><subject>Mathematical analysis</subject><subject>Mathematical problems</subject><subject>Nonlinearity</subject><subject>Optimization</subject><subject>Partial differential equations</subject><subject>Two dimensional</subject><subject>Two dimensional analysis</subject><subject>Wave equations</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0EtLxDAUBeAgCj5X7iXgRpRqbtMkneUwjg8YdaGiu5K2t9ihbTpNqvbfm7EuxI2EkBC-XDiHkENg5wBCXIQMxAWPGbBog-yAkDwQEKlNf2dhFEDIX7fJrrVLxkIQEO8QnLZtZz7LWjukj6bqXWkaagr69GGCy7LGxvoHXdF701Rlg7qjL_od6XzV62-aDvShdf5_RW9MbZxpBzq1Q90648qM3qF7M_k-2Sp0ZfHg59wjz1fzp9lNsHi4vp1NF0HG44kLQLIIohyYzEWUAQpRaKXyFCSXqQi5jFK_kRW55kWaZ1rFGjDjYcoLoTDne-RknOszrXq0LqlLm2FV6QZNbxOQSk0k-OXp8R-6NH3nk66VBM5UHDOvzkaVdcbaDouk7XzWbkiAJevKk3XlyVi516ejfiubXH-U_-CjEaMnWOhfWHEpOf8CR2WKhA</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Khan, Ilyas</creator><creator>Abdelhameed, Tarek Nabil Ahmed</creator><creator>Ching, Dennis Ling Chuan</creator><creator>Islam, S.</creator><creator>Ullah, Hakeem</creator><creator>Fiza, Mehreen</creator><general>Hindawi Publishing Corporation</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20150101</creationdate><title>Approximate Solution of Two-Dimensional Nonlinear Wave Equation by Optimal Homotopy Asymptotic Method</title><author>Khan, Ilyas ; Abdelhameed, Tarek Nabil Ahmed ; Ching, Dennis Ling Chuan ; Islam, S. ; Ullah, Hakeem ; Fiza, Mehreen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-160414d106d54c1e55fa77db1636b52364b364e0fda3fbdca78a1ec32b3f57ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Approximation</topic><topic>Asymptotic methods</topic><topic>Asymptotic series</topic><topic>Convergence</topic><topic>Mathematical analysis</topic><topic>Mathematical problems</topic><topic>Nonlinearity</topic><topic>Optimization</topic><topic>Partial differential equations</topic><topic>Two dimensional</topic><topic>Two dimensional analysis</topic><topic>Wave equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khan, Ilyas</creatorcontrib><creatorcontrib>Abdelhameed, Tarek Nabil Ahmed</creatorcontrib><creatorcontrib>Ching, Dennis Ling Chuan</creatorcontrib><creatorcontrib>Islam, S.</creatorcontrib><creatorcontrib>Ullah, Hakeem</creatorcontrib><creatorcontrib>Fiza, Mehreen</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khan, Ilyas</au><au>Abdelhameed, Tarek Nabil Ahmed</au><au>Ching, Dennis Ling Chuan</au><au>Islam, S.</au><au>Ullah, Hakeem</au><au>Fiza, Mehreen</au><au>Kar, Haranath</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approximate Solution of Two-Dimensional Nonlinear Wave Equation by Optimal Homotopy Asymptotic Method</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2015-01-01</date><risdate>2015</risdate><volume>2015</volume><issue>2015</issue><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>The two-dimensional nonlinear wave equations are considered. Solution to the problem is approximated by using optimal homotopy asymptotic method (OHAM). The residual and convergence of the proposed method to nonlinear wave equation are presented through graphs. The resultant analytic series solution of the two-dimensional nonlinear wave equation shows the effectiveness of the proposed method. The comparison of results has been made with the existing results available in the literature.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2015/380104</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1024-123X
ispartof Mathematical problems in engineering, 2015-01, Vol.2015 (2015), p.1-7
issn 1024-123X
1563-5147
language eng
recordid cdi_proquest_miscellaneous_1677961616
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Online Library Open Access; Alma/SFX Local Collection
subjects Approximation
Asymptotic methods
Asymptotic series
Convergence
Mathematical analysis
Mathematical problems
Nonlinearity
Optimization
Partial differential equations
Two dimensional
Two dimensional analysis
Wave equations
title Approximate Solution of Two-Dimensional Nonlinear Wave Equation by Optimal Homotopy Asymptotic Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T22%3A15%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approximate%20Solution%20of%20Two-Dimensional%20Nonlinear%20Wave%20Equation%20by%20Optimal%20Homotopy%20Asymptotic%20Method&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Khan,%20Ilyas&rft.date=2015-01-01&rft.volume=2015&rft.issue=2015&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2015/380104&rft_dat=%3Cproquest_cross%3E3617729631%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1661307880&rft_id=info:pmid/&rfr_iscdi=true