Approximate Solution of Two-Dimensional Nonlinear Wave Equation by Optimal Homotopy Asymptotic Method
The two-dimensional nonlinear wave equations are considered. Solution to the problem is approximated by using optimal homotopy asymptotic method (OHAM). The residual and convergence of the proposed method to nonlinear wave equation are presented through graphs. The resultant analytic series solution...
Gespeichert in:
Veröffentlicht in: | Mathematical problems in engineering 2015-01, Vol.2015 (2015), p.1-7 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7 |
---|---|
container_issue | 2015 |
container_start_page | 1 |
container_title | Mathematical problems in engineering |
container_volume | 2015 |
creator | Khan, Ilyas Abdelhameed, Tarek Nabil Ahmed Ching, Dennis Ling Chuan Islam, S. Ullah, Hakeem Fiza, Mehreen |
description | The two-dimensional nonlinear wave equations are considered. Solution to the problem is approximated by using optimal homotopy asymptotic method (OHAM). The residual and convergence of the proposed method to nonlinear wave equation are presented through graphs. The resultant analytic series solution of the two-dimensional nonlinear wave equation shows the effectiveness of the proposed method. The comparison of results has been made with the existing results available in the literature. |
doi_str_mv | 10.1155/2015/380104 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677961616</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3617729631</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-160414d106d54c1e55fa77db1636b52364b364e0fda3fbdca78a1ec32b3f57ed3</originalsourceid><addsrcrecordid>eNqF0EtLxDAUBeAgCj5X7iXgRpRqbtMkneUwjg8YdaGiu5K2t9ihbTpNqvbfm7EuxI2EkBC-XDiHkENg5wBCXIQMxAWPGbBog-yAkDwQEKlNf2dhFEDIX7fJrrVLxkIQEO8QnLZtZz7LWjukj6bqXWkaagr69GGCy7LGxvoHXdF701Rlg7qjL_od6XzV62-aDvShdf5_RW9MbZxpBzq1Q90648qM3qF7M_k-2Sp0ZfHg59wjz1fzp9lNsHi4vp1NF0HG44kLQLIIohyYzEWUAQpRaKXyFCSXqQi5jFK_kRW55kWaZ1rFGjDjYcoLoTDne-RknOszrXq0LqlLm2FV6QZNbxOQSk0k-OXp8R-6NH3nk66VBM5UHDOvzkaVdcbaDouk7XzWbkiAJevKk3XlyVi516ejfiubXH-U_-CjEaMnWOhfWHEpOf8CR2WKhA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1661307880</pqid></control><display><type>article</type><title>Approximate Solution of Two-Dimensional Nonlinear Wave Equation by Optimal Homotopy Asymptotic Method</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Online Library Open Access</source><source>Alma/SFX Local Collection</source><creator>Khan, Ilyas ; Abdelhameed, Tarek Nabil Ahmed ; Ching, Dennis Ling Chuan ; Islam, S. ; Ullah, Hakeem ; Fiza, Mehreen</creator><contributor>Kar, Haranath</contributor><creatorcontrib>Khan, Ilyas ; Abdelhameed, Tarek Nabil Ahmed ; Ching, Dennis Ling Chuan ; Islam, S. ; Ullah, Hakeem ; Fiza, Mehreen ; Kar, Haranath</creatorcontrib><description>The two-dimensional nonlinear wave equations are considered. Solution to the problem is approximated by using optimal homotopy asymptotic method (OHAM). The residual and convergence of the proposed method to nonlinear wave equation are presented through graphs. The resultant analytic series solution of the two-dimensional nonlinear wave equation shows the effectiveness of the proposed method. The comparison of results has been made with the existing results available in the literature.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2015/380104</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Approximation ; Asymptotic methods ; Asymptotic series ; Convergence ; Mathematical analysis ; Mathematical problems ; Nonlinearity ; Optimization ; Partial differential equations ; Two dimensional ; Two dimensional analysis ; Wave equations</subject><ispartof>Mathematical problems in engineering, 2015-01, Vol.2015 (2015), p.1-7</ispartof><rights>Copyright © 2015 H. Ullah et al.</rights><rights>Copyright © 2015 H. Ullah et al. H. Ullah et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-160414d106d54c1e55fa77db1636b52364b364e0fda3fbdca78a1ec32b3f57ed3</citedby><cites>FETCH-LOGICAL-c389t-160414d106d54c1e55fa77db1636b52364b364e0fda3fbdca78a1ec32b3f57ed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><contributor>Kar, Haranath</contributor><creatorcontrib>Khan, Ilyas</creatorcontrib><creatorcontrib>Abdelhameed, Tarek Nabil Ahmed</creatorcontrib><creatorcontrib>Ching, Dennis Ling Chuan</creatorcontrib><creatorcontrib>Islam, S.</creatorcontrib><creatorcontrib>Ullah, Hakeem</creatorcontrib><creatorcontrib>Fiza, Mehreen</creatorcontrib><title>Approximate Solution of Two-Dimensional Nonlinear Wave Equation by Optimal Homotopy Asymptotic Method</title><title>Mathematical problems in engineering</title><description>The two-dimensional nonlinear wave equations are considered. Solution to the problem is approximated by using optimal homotopy asymptotic method (OHAM). The residual and convergence of the proposed method to nonlinear wave equation are presented through graphs. The resultant analytic series solution of the two-dimensional nonlinear wave equation shows the effectiveness of the proposed method. The comparison of results has been made with the existing results available in the literature.</description><subject>Approximation</subject><subject>Asymptotic methods</subject><subject>Asymptotic series</subject><subject>Convergence</subject><subject>Mathematical analysis</subject><subject>Mathematical problems</subject><subject>Nonlinearity</subject><subject>Optimization</subject><subject>Partial differential equations</subject><subject>Two dimensional</subject><subject>Two dimensional analysis</subject><subject>Wave equations</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0EtLxDAUBeAgCj5X7iXgRpRqbtMkneUwjg8YdaGiu5K2t9ihbTpNqvbfm7EuxI2EkBC-XDiHkENg5wBCXIQMxAWPGbBog-yAkDwQEKlNf2dhFEDIX7fJrrVLxkIQEO8QnLZtZz7LWjukj6bqXWkaagr69GGCy7LGxvoHXdF701Rlg7qjL_od6XzV62-aDvShdf5_RW9MbZxpBzq1Q90648qM3qF7M_k-2Sp0ZfHg59wjz1fzp9lNsHi4vp1NF0HG44kLQLIIohyYzEWUAQpRaKXyFCSXqQi5jFK_kRW55kWaZ1rFGjDjYcoLoTDne-RknOszrXq0LqlLm2FV6QZNbxOQSk0k-OXp8R-6NH3nk66VBM5UHDOvzkaVdcbaDouk7XzWbkiAJevKk3XlyVi516ejfiubXH-U_-CjEaMnWOhfWHEpOf8CR2WKhA</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Khan, Ilyas</creator><creator>Abdelhameed, Tarek Nabil Ahmed</creator><creator>Ching, Dennis Ling Chuan</creator><creator>Islam, S.</creator><creator>Ullah, Hakeem</creator><creator>Fiza, Mehreen</creator><general>Hindawi Publishing Corporation</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20150101</creationdate><title>Approximate Solution of Two-Dimensional Nonlinear Wave Equation by Optimal Homotopy Asymptotic Method</title><author>Khan, Ilyas ; Abdelhameed, Tarek Nabil Ahmed ; Ching, Dennis Ling Chuan ; Islam, S. ; Ullah, Hakeem ; Fiza, Mehreen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-160414d106d54c1e55fa77db1636b52364b364e0fda3fbdca78a1ec32b3f57ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Approximation</topic><topic>Asymptotic methods</topic><topic>Asymptotic series</topic><topic>Convergence</topic><topic>Mathematical analysis</topic><topic>Mathematical problems</topic><topic>Nonlinearity</topic><topic>Optimization</topic><topic>Partial differential equations</topic><topic>Two dimensional</topic><topic>Two dimensional analysis</topic><topic>Wave equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khan, Ilyas</creatorcontrib><creatorcontrib>Abdelhameed, Tarek Nabil Ahmed</creatorcontrib><creatorcontrib>Ching, Dennis Ling Chuan</creatorcontrib><creatorcontrib>Islam, S.</creatorcontrib><creatorcontrib>Ullah, Hakeem</creatorcontrib><creatorcontrib>Fiza, Mehreen</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khan, Ilyas</au><au>Abdelhameed, Tarek Nabil Ahmed</au><au>Ching, Dennis Ling Chuan</au><au>Islam, S.</au><au>Ullah, Hakeem</au><au>Fiza, Mehreen</au><au>Kar, Haranath</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approximate Solution of Two-Dimensional Nonlinear Wave Equation by Optimal Homotopy Asymptotic Method</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2015-01-01</date><risdate>2015</risdate><volume>2015</volume><issue>2015</issue><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>The two-dimensional nonlinear wave equations are considered. Solution to the problem is approximated by using optimal homotopy asymptotic method (OHAM). The residual and convergence of the proposed method to nonlinear wave equation are presented through graphs. The resultant analytic series solution of the two-dimensional nonlinear wave equation shows the effectiveness of the proposed method. The comparison of results has been made with the existing results available in the literature.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2015/380104</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1024-123X |
ispartof | Mathematical problems in engineering, 2015-01, Vol.2015 (2015), p.1-7 |
issn | 1024-123X 1563-5147 |
language | eng |
recordid | cdi_proquest_miscellaneous_1677961616 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Online Library Open Access; Alma/SFX Local Collection |
subjects | Approximation Asymptotic methods Asymptotic series Convergence Mathematical analysis Mathematical problems Nonlinearity Optimization Partial differential equations Two dimensional Two dimensional analysis Wave equations |
title | Approximate Solution of Two-Dimensional Nonlinear Wave Equation by Optimal Homotopy Asymptotic Method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T22%3A15%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approximate%20Solution%20of%20Two-Dimensional%20Nonlinear%20Wave%20Equation%20by%20Optimal%20Homotopy%20Asymptotic%20Method&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Khan,%20Ilyas&rft.date=2015-01-01&rft.volume=2015&rft.issue=2015&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2015/380104&rft_dat=%3Cproquest_cross%3E3617729631%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1661307880&rft_id=info:pmid/&rfr_iscdi=true |