Oxygen transport resistance correlated to liquid water saturation in the gas diffusion layer of PEM fuel cells

Under typical proton exchange membrane fuel cell (PEMFC) operating conditions, temperature gradients through the porous gas diffusion layer (GDL) can result in product water condensation. As a result, non-uniform partial saturation of the GDL changes the local effective porosity and tortuosity encou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of heat and mass transfer 2014-04, Vol.71, p.585-592
Hauptverfasser: Owejan, Jon P., Trabold, Thomas A., Mench, Matthew M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 592
container_issue
container_start_page 585
container_title International journal of heat and mass transfer
container_volume 71
creator Owejan, Jon P.
Trabold, Thomas A.
Mench, Matthew M.
description Under typical proton exchange membrane fuel cell (PEMFC) operating conditions, temperature gradients through the porous gas diffusion layer (GDL) can result in product water condensation. As a result, non-uniform partial saturation of the GDL changes the local effective porosity and tortuosity encountered by oxygen diffusing to the catalyst layer. This additional transport resistance reduces the partial pressure of oxygen at the catalyst surface of an air-fed cathode. In the current work, this phenomenon is investigated in two-dimensions using limiting current experiments that define GDL boundary conditions along with simultaneous neutron imaging to measure the local water content relative to the flow field geometry. The subsequent effective diffusion coefficient vs. saturation relationship derived from this method is reported for two common GDL carbon fiber substrates. It is also shown that the land vs. channel distribution of liquid water must be accounted for to accurately predict diffusion resistance. These results represent the first time that the effect of water saturation on effective diffusion coefficient has been directly measured in situ, thus enabling accurate determination of the exponent “n” in the modified Bruggeman relationship for two commercially available gas diffusion layer materials.
doi_str_mv 10.1016/j.ijheatmasstransfer.2013.12.059
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677961226</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0017931013011046</els_id><sourcerecordid>1544018554</sourcerecordid><originalsourceid>FETCH-LOGICAL-c515t-a301b9dd77d514f908624c7f6a4be3085175b21c0aaf4edf6dc29fa3c71f378e3</originalsourceid><addsrcrecordid>eNqNkcFu1DAQhi0EUpfSd_CxlwSPE8fJDVQVKGpVDnC2vPa49SqbbD0OdN8ep8uNA5xGM_PPp5n5GbsEUYOA7v2ujrtHtHlviXKyEwVMtRTQ1CBroYZXbAO9HioJ_fCabYQAXQ0NiDP2lmi3pqLtNmy6fz4-4MRfEIc5ZZ6QImU7OeRuTglHm9HzPPMxPi3R818lT5xsXpLNcZ54LNOPyB8scR9DWGgtjvZYVHPg367veFhw5A7Hkd6xN8GOhBd_4jn78en6-9WX6vb-883Vx9vKKVC5so2A7eC91l5BGwbRd7J1OnS23WIjegVabSU4YW1o0YfOOzkE2zgNodE9Nufs8sQ9pPlpQcpmH2ndwE44L2Sg03roQMru31LVtgJ6pdoi_XCSujQTJQzmkOLepqMBYVZXzM787YpZXTEgTXGlIL6eEFiu_xlLl1zE8mwfE7ps_Bz_H_YbNYKkig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1544018554</pqid></control><display><type>article</type><title>Oxygen transport resistance correlated to liquid water saturation in the gas diffusion layer of PEM fuel cells</title><source>Elsevier ScienceDirect Journals</source><creator>Owejan, Jon P. ; Trabold, Thomas A. ; Mench, Matthew M.</creator><creatorcontrib>Owejan, Jon P. ; Trabold, Thomas A. ; Mench, Matthew M.</creatorcontrib><description>Under typical proton exchange membrane fuel cell (PEMFC) operating conditions, temperature gradients through the porous gas diffusion layer (GDL) can result in product water condensation. As a result, non-uniform partial saturation of the GDL changes the local effective porosity and tortuosity encountered by oxygen diffusing to the catalyst layer. This additional transport resistance reduces the partial pressure of oxygen at the catalyst surface of an air-fed cathode. In the current work, this phenomenon is investigated in two-dimensions using limiting current experiments that define GDL boundary conditions along with simultaneous neutron imaging to measure the local water content relative to the flow field geometry. The subsequent effective diffusion coefficient vs. saturation relationship derived from this method is reported for two common GDL carbon fiber substrates. It is also shown that the land vs. channel distribution of liquid water must be accounted for to accurately predict diffusion resistance. These results represent the first time that the effect of water saturation on effective diffusion coefficient has been directly measured in situ, thus enabling accurate determination of the exponent “n” in the modified Bruggeman relationship for two commercially available gas diffusion layer materials.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/j.ijheatmasstransfer.2013.12.059</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Catalysts ; Diffusion ; Diffusion coefficient ; Fuel cells ; Gas diffusion ; Limiting current ; Neutron imaging ; PEM ; Saturation ; Transport ; Water</subject><ispartof>International journal of heat and mass transfer, 2014-04, Vol.71, p.585-592</ispartof><rights>2014 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c515t-a301b9dd77d514f908624c7f6a4be3085175b21c0aaf4edf6dc29fa3c71f378e3</citedby><cites>FETCH-LOGICAL-c515t-a301b9dd77d514f908624c7f6a4be3085175b21c0aaf4edf6dc29fa3c71f378e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0017931013011046$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Owejan, Jon P.</creatorcontrib><creatorcontrib>Trabold, Thomas A.</creatorcontrib><creatorcontrib>Mench, Matthew M.</creatorcontrib><title>Oxygen transport resistance correlated to liquid water saturation in the gas diffusion layer of PEM fuel cells</title><title>International journal of heat and mass transfer</title><description>Under typical proton exchange membrane fuel cell (PEMFC) operating conditions, temperature gradients through the porous gas diffusion layer (GDL) can result in product water condensation. As a result, non-uniform partial saturation of the GDL changes the local effective porosity and tortuosity encountered by oxygen diffusing to the catalyst layer. This additional transport resistance reduces the partial pressure of oxygen at the catalyst surface of an air-fed cathode. In the current work, this phenomenon is investigated in two-dimensions using limiting current experiments that define GDL boundary conditions along with simultaneous neutron imaging to measure the local water content relative to the flow field geometry. The subsequent effective diffusion coefficient vs. saturation relationship derived from this method is reported for two common GDL carbon fiber substrates. It is also shown that the land vs. channel distribution of liquid water must be accounted for to accurately predict diffusion resistance. These results represent the first time that the effect of water saturation on effective diffusion coefficient has been directly measured in situ, thus enabling accurate determination of the exponent “n” in the modified Bruggeman relationship for two commercially available gas diffusion layer materials.</description><subject>Catalysts</subject><subject>Diffusion</subject><subject>Diffusion coefficient</subject><subject>Fuel cells</subject><subject>Gas diffusion</subject><subject>Limiting current</subject><subject>Neutron imaging</subject><subject>PEM</subject><subject>Saturation</subject><subject>Transport</subject><subject>Water</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkcFu1DAQhi0EUpfSd_CxlwSPE8fJDVQVKGpVDnC2vPa49SqbbD0OdN8ep8uNA5xGM_PPp5n5GbsEUYOA7v2ujrtHtHlviXKyEwVMtRTQ1CBroYZXbAO9HioJ_fCabYQAXQ0NiDP2lmi3pqLtNmy6fz4-4MRfEIc5ZZ6QImU7OeRuTglHm9HzPPMxPi3R818lT5xsXpLNcZ54LNOPyB8scR9DWGgtjvZYVHPg367veFhw5A7Hkd6xN8GOhBd_4jn78en6-9WX6vb-883Vx9vKKVC5so2A7eC91l5BGwbRd7J1OnS23WIjegVabSU4YW1o0YfOOzkE2zgNodE9Nufs8sQ9pPlpQcpmH2ndwE44L2Sg03roQMru31LVtgJ6pdoi_XCSujQTJQzmkOLepqMBYVZXzM787YpZXTEgTXGlIL6eEFiu_xlLl1zE8mwfE7ps_Bz_H_YbNYKkig</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Owejan, Jon P.</creator><creator>Trabold, Thomas A.</creator><creator>Mench, Matthew M.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20140401</creationdate><title>Oxygen transport resistance correlated to liquid water saturation in the gas diffusion layer of PEM fuel cells</title><author>Owejan, Jon P. ; Trabold, Thomas A. ; Mench, Matthew M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c515t-a301b9dd77d514f908624c7f6a4be3085175b21c0aaf4edf6dc29fa3c71f378e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Catalysts</topic><topic>Diffusion</topic><topic>Diffusion coefficient</topic><topic>Fuel cells</topic><topic>Gas diffusion</topic><topic>Limiting current</topic><topic>Neutron imaging</topic><topic>PEM</topic><topic>Saturation</topic><topic>Transport</topic><topic>Water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Owejan, Jon P.</creatorcontrib><creatorcontrib>Trabold, Thomas A.</creatorcontrib><creatorcontrib>Mench, Matthew M.</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Owejan, Jon P.</au><au>Trabold, Thomas A.</au><au>Mench, Matthew M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxygen transport resistance correlated to liquid water saturation in the gas diffusion layer of PEM fuel cells</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>2014-04-01</date><risdate>2014</risdate><volume>71</volume><spage>585</spage><epage>592</epage><pages>585-592</pages><issn>0017-9310</issn><eissn>1879-2189</eissn><abstract>Under typical proton exchange membrane fuel cell (PEMFC) operating conditions, temperature gradients through the porous gas diffusion layer (GDL) can result in product water condensation. As a result, non-uniform partial saturation of the GDL changes the local effective porosity and tortuosity encountered by oxygen diffusing to the catalyst layer. This additional transport resistance reduces the partial pressure of oxygen at the catalyst surface of an air-fed cathode. In the current work, this phenomenon is investigated in two-dimensions using limiting current experiments that define GDL boundary conditions along with simultaneous neutron imaging to measure the local water content relative to the flow field geometry. The subsequent effective diffusion coefficient vs. saturation relationship derived from this method is reported for two common GDL carbon fiber substrates. It is also shown that the land vs. channel distribution of liquid water must be accounted for to accurately predict diffusion resistance. These results represent the first time that the effect of water saturation on effective diffusion coefficient has been directly measured in situ, thus enabling accurate determination of the exponent “n” in the modified Bruggeman relationship for two commercially available gas diffusion layer materials.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ijheatmasstransfer.2013.12.059</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0017-9310
ispartof International journal of heat and mass transfer, 2014-04, Vol.71, p.585-592
issn 0017-9310
1879-2189
language eng
recordid cdi_proquest_miscellaneous_1677961226
source Elsevier ScienceDirect Journals
subjects Catalysts
Diffusion
Diffusion coefficient
Fuel cells
Gas diffusion
Limiting current
Neutron imaging
PEM
Saturation
Transport
Water
title Oxygen transport resistance correlated to liquid water saturation in the gas diffusion layer of PEM fuel cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T08%3A32%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxygen%20transport%20resistance%20correlated%20to%20liquid%20water%20saturation%20in%20the%20gas%20diffusion%20layer%20of%20PEM%20fuel%20cells&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Owejan,%20Jon%20P.&rft.date=2014-04-01&rft.volume=71&rft.spage=585&rft.epage=592&rft.pages=585-592&rft.issn=0017-9310&rft.eissn=1879-2189&rft_id=info:doi/10.1016/j.ijheatmasstransfer.2013.12.059&rft_dat=%3Cproquest_cross%3E1544018554%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1544018554&rft_id=info:pmid/&rft_els_id=S0017931013011046&rfr_iscdi=true