Oxygen transport resistance correlated to liquid water saturation in the gas diffusion layer of PEM fuel cells
Under typical proton exchange membrane fuel cell (PEMFC) operating conditions, temperature gradients through the porous gas diffusion layer (GDL) can result in product water condensation. As a result, non-uniform partial saturation of the GDL changes the local effective porosity and tortuosity encou...
Gespeichert in:
Veröffentlicht in: | International journal of heat and mass transfer 2014-04, Vol.71, p.585-592 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 592 |
---|---|
container_issue | |
container_start_page | 585 |
container_title | International journal of heat and mass transfer |
container_volume | 71 |
creator | Owejan, Jon P. Trabold, Thomas A. Mench, Matthew M. |
description | Under typical proton exchange membrane fuel cell (PEMFC) operating conditions, temperature gradients through the porous gas diffusion layer (GDL) can result in product water condensation. As a result, non-uniform partial saturation of the GDL changes the local effective porosity and tortuosity encountered by oxygen diffusing to the catalyst layer. This additional transport resistance reduces the partial pressure of oxygen at the catalyst surface of an air-fed cathode. In the current work, this phenomenon is investigated in two-dimensions using limiting current experiments that define GDL boundary conditions along with simultaneous neutron imaging to measure the local water content relative to the flow field geometry. The subsequent effective diffusion coefficient vs. saturation relationship derived from this method is reported for two common GDL carbon fiber substrates. It is also shown that the land vs. channel distribution of liquid water must be accounted for to accurately predict diffusion resistance. These results represent the first time that the effect of water saturation on effective diffusion coefficient has been directly measured in situ, thus enabling accurate determination of the exponent “n” in the modified Bruggeman relationship for two commercially available gas diffusion layer materials. |
doi_str_mv | 10.1016/j.ijheatmasstransfer.2013.12.059 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677961226</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0017931013011046</els_id><sourcerecordid>1544018554</sourcerecordid><originalsourceid>FETCH-LOGICAL-c515t-a301b9dd77d514f908624c7f6a4be3085175b21c0aaf4edf6dc29fa3c71f378e3</originalsourceid><addsrcrecordid>eNqNkcFu1DAQhi0EUpfSd_CxlwSPE8fJDVQVKGpVDnC2vPa49SqbbD0OdN8ep8uNA5xGM_PPp5n5GbsEUYOA7v2ujrtHtHlviXKyEwVMtRTQ1CBroYZXbAO9HioJ_fCabYQAXQ0NiDP2lmi3pqLtNmy6fz4-4MRfEIc5ZZ6QImU7OeRuTglHm9HzPPMxPi3R818lT5xsXpLNcZ54LNOPyB8scR9DWGgtjvZYVHPg367veFhw5A7Hkd6xN8GOhBd_4jn78en6-9WX6vb-883Vx9vKKVC5so2A7eC91l5BGwbRd7J1OnS23WIjegVabSU4YW1o0YfOOzkE2zgNodE9Nufs8sQ9pPlpQcpmH2ndwE44L2Sg03roQMru31LVtgJ6pdoi_XCSujQTJQzmkOLepqMBYVZXzM787YpZXTEgTXGlIL6eEFiu_xlLl1zE8mwfE7ps_Bz_H_YbNYKkig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1544018554</pqid></control><display><type>article</type><title>Oxygen transport resistance correlated to liquid water saturation in the gas diffusion layer of PEM fuel cells</title><source>Elsevier ScienceDirect Journals</source><creator>Owejan, Jon P. ; Trabold, Thomas A. ; Mench, Matthew M.</creator><creatorcontrib>Owejan, Jon P. ; Trabold, Thomas A. ; Mench, Matthew M.</creatorcontrib><description>Under typical proton exchange membrane fuel cell (PEMFC) operating conditions, temperature gradients through the porous gas diffusion layer (GDL) can result in product water condensation. As a result, non-uniform partial saturation of the GDL changes the local effective porosity and tortuosity encountered by oxygen diffusing to the catalyst layer. This additional transport resistance reduces the partial pressure of oxygen at the catalyst surface of an air-fed cathode. In the current work, this phenomenon is investigated in two-dimensions using limiting current experiments that define GDL boundary conditions along with simultaneous neutron imaging to measure the local water content relative to the flow field geometry. The subsequent effective diffusion coefficient vs. saturation relationship derived from this method is reported for two common GDL carbon fiber substrates. It is also shown that the land vs. channel distribution of liquid water must be accounted for to accurately predict diffusion resistance. These results represent the first time that the effect of water saturation on effective diffusion coefficient has been directly measured in situ, thus enabling accurate determination of the exponent “n” in the modified Bruggeman relationship for two commercially available gas diffusion layer materials.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/j.ijheatmasstransfer.2013.12.059</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Catalysts ; Diffusion ; Diffusion coefficient ; Fuel cells ; Gas diffusion ; Limiting current ; Neutron imaging ; PEM ; Saturation ; Transport ; Water</subject><ispartof>International journal of heat and mass transfer, 2014-04, Vol.71, p.585-592</ispartof><rights>2014 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c515t-a301b9dd77d514f908624c7f6a4be3085175b21c0aaf4edf6dc29fa3c71f378e3</citedby><cites>FETCH-LOGICAL-c515t-a301b9dd77d514f908624c7f6a4be3085175b21c0aaf4edf6dc29fa3c71f378e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0017931013011046$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Owejan, Jon P.</creatorcontrib><creatorcontrib>Trabold, Thomas A.</creatorcontrib><creatorcontrib>Mench, Matthew M.</creatorcontrib><title>Oxygen transport resistance correlated to liquid water saturation in the gas diffusion layer of PEM fuel cells</title><title>International journal of heat and mass transfer</title><description>Under typical proton exchange membrane fuel cell (PEMFC) operating conditions, temperature gradients through the porous gas diffusion layer (GDL) can result in product water condensation. As a result, non-uniform partial saturation of the GDL changes the local effective porosity and tortuosity encountered by oxygen diffusing to the catalyst layer. This additional transport resistance reduces the partial pressure of oxygen at the catalyst surface of an air-fed cathode. In the current work, this phenomenon is investigated in two-dimensions using limiting current experiments that define GDL boundary conditions along with simultaneous neutron imaging to measure the local water content relative to the flow field geometry. The subsequent effective diffusion coefficient vs. saturation relationship derived from this method is reported for two common GDL carbon fiber substrates. It is also shown that the land vs. channel distribution of liquid water must be accounted for to accurately predict diffusion resistance. These results represent the first time that the effect of water saturation on effective diffusion coefficient has been directly measured in situ, thus enabling accurate determination of the exponent “n” in the modified Bruggeman relationship for two commercially available gas diffusion layer materials.</description><subject>Catalysts</subject><subject>Diffusion</subject><subject>Diffusion coefficient</subject><subject>Fuel cells</subject><subject>Gas diffusion</subject><subject>Limiting current</subject><subject>Neutron imaging</subject><subject>PEM</subject><subject>Saturation</subject><subject>Transport</subject><subject>Water</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkcFu1DAQhi0EUpfSd_CxlwSPE8fJDVQVKGpVDnC2vPa49SqbbD0OdN8ep8uNA5xGM_PPp5n5GbsEUYOA7v2ujrtHtHlviXKyEwVMtRTQ1CBroYZXbAO9HioJ_fCabYQAXQ0NiDP2lmi3pqLtNmy6fz4-4MRfEIc5ZZ6QImU7OeRuTglHm9HzPPMxPi3R818lT5xsXpLNcZ54LNOPyB8scR9DWGgtjvZYVHPg367veFhw5A7Hkd6xN8GOhBd_4jn78en6-9WX6vb-883Vx9vKKVC5so2A7eC91l5BGwbRd7J1OnS23WIjegVabSU4YW1o0YfOOzkE2zgNodE9Nufs8sQ9pPlpQcpmH2ndwE44L2Sg03roQMru31LVtgJ6pdoi_XCSujQTJQzmkOLepqMBYVZXzM787YpZXTEgTXGlIL6eEFiu_xlLl1zE8mwfE7ps_Bz_H_YbNYKkig</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Owejan, Jon P.</creator><creator>Trabold, Thomas A.</creator><creator>Mench, Matthew M.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20140401</creationdate><title>Oxygen transport resistance correlated to liquid water saturation in the gas diffusion layer of PEM fuel cells</title><author>Owejan, Jon P. ; Trabold, Thomas A. ; Mench, Matthew M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c515t-a301b9dd77d514f908624c7f6a4be3085175b21c0aaf4edf6dc29fa3c71f378e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Catalysts</topic><topic>Diffusion</topic><topic>Diffusion coefficient</topic><topic>Fuel cells</topic><topic>Gas diffusion</topic><topic>Limiting current</topic><topic>Neutron imaging</topic><topic>PEM</topic><topic>Saturation</topic><topic>Transport</topic><topic>Water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Owejan, Jon P.</creatorcontrib><creatorcontrib>Trabold, Thomas A.</creatorcontrib><creatorcontrib>Mench, Matthew M.</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Owejan, Jon P.</au><au>Trabold, Thomas A.</au><au>Mench, Matthew M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxygen transport resistance correlated to liquid water saturation in the gas diffusion layer of PEM fuel cells</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>2014-04-01</date><risdate>2014</risdate><volume>71</volume><spage>585</spage><epage>592</epage><pages>585-592</pages><issn>0017-9310</issn><eissn>1879-2189</eissn><abstract>Under typical proton exchange membrane fuel cell (PEMFC) operating conditions, temperature gradients through the porous gas diffusion layer (GDL) can result in product water condensation. As a result, non-uniform partial saturation of the GDL changes the local effective porosity and tortuosity encountered by oxygen diffusing to the catalyst layer. This additional transport resistance reduces the partial pressure of oxygen at the catalyst surface of an air-fed cathode. In the current work, this phenomenon is investigated in two-dimensions using limiting current experiments that define GDL boundary conditions along with simultaneous neutron imaging to measure the local water content relative to the flow field geometry. The subsequent effective diffusion coefficient vs. saturation relationship derived from this method is reported for two common GDL carbon fiber substrates. It is also shown that the land vs. channel distribution of liquid water must be accounted for to accurately predict diffusion resistance. These results represent the first time that the effect of water saturation on effective diffusion coefficient has been directly measured in situ, thus enabling accurate determination of the exponent “n” in the modified Bruggeman relationship for two commercially available gas diffusion layer materials.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ijheatmasstransfer.2013.12.059</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0017-9310 |
ispartof | International journal of heat and mass transfer, 2014-04, Vol.71, p.585-592 |
issn | 0017-9310 1879-2189 |
language | eng |
recordid | cdi_proquest_miscellaneous_1677961226 |
source | Elsevier ScienceDirect Journals |
subjects | Catalysts Diffusion Diffusion coefficient Fuel cells Gas diffusion Limiting current Neutron imaging PEM Saturation Transport Water |
title | Oxygen transport resistance correlated to liquid water saturation in the gas diffusion layer of PEM fuel cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T08%3A32%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxygen%20transport%20resistance%20correlated%20to%20liquid%20water%20saturation%20in%20the%20gas%20diffusion%20layer%20of%20PEM%20fuel%20cells&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Owejan,%20Jon%20P.&rft.date=2014-04-01&rft.volume=71&rft.spage=585&rft.epage=592&rft.pages=585-592&rft.issn=0017-9310&rft.eissn=1879-2189&rft_id=info:doi/10.1016/j.ijheatmasstransfer.2013.12.059&rft_dat=%3Cproquest_cross%3E1544018554%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1544018554&rft_id=info:pmid/&rft_els_id=S0017931013011046&rfr_iscdi=true |