Simulation of the resistive state of superconducting films in a magnetic field on the basis of the nonstationary Ginzburg-Landau equation

By numerical simulation of the temporal two-dimensional Ginzburg-Landau equation, we study the resistive state in superconducting bridges with dimensions ξ d λ. It is found that the basis of the resistive state here is, as for d λ, the vortical structures (vortices) whose motion defines the resistiv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Radiophysics and quantum electronics 1997, Vol.40 (1-2), p.139-151
Hauptverfasser: VYSHESLAVTSEV, P. P, KURIN, V. V, NEFEDOV, I. M, SHERESHEVSKY, I. A, ANDRONOV, A. A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 151
container_issue 1-2
container_start_page 139
container_title Radiophysics and quantum electronics
container_volume 40
creator VYSHESLAVTSEV, P. P
KURIN, V. V
NEFEDOV, I. M
SHERESHEVSKY, I. A
ANDRONOV, A. A
description By numerical simulation of the temporal two-dimensional Ginzburg-Landau equation, we study the resistive state in superconducting bridges with dimensions ξ d λ. It is found that the basis of the resistive state here is, as for d λ, the vortical structures (vortices) whose motion defines the resistive state. It is shown that the motion of vortices is stochastic in a certain range of currents and magnetic fields. We give a classification of possible dynamic and stochastic modes and examine the transitions from the current flow mode, which is observed for large magnetic fields and small transport currents, to the mode of fast phase slippage. The symmetry breaking effect of the resistive state, which results in cross tension with a quadrupole structure, has been detected.[PUBLICATION ABSTRACT]
doi_str_mv 10.1007/BF02677831
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677960464</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4272460411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c195t-248b6a54e681605cdab1ec9cc8829e9bae28f51bd9b7b4dcf4ca565c1ae79d2f3</originalsourceid><addsrcrecordid>eNpdkctKxTAQhoMoeLxsfIKALkSoJm3SpksVb3DAhbou03R6jLTpMRdB38C3NscruBr458uXSYaQPc6OOWPVydkly8uqUgVfIzMuqyKrec7WyYyxosiUEMUm2fL-ibGECzUj73dmjAMEM1k69TQ8InXojQ_mBakPEHAV-7hEpyfbRR2MXdDeDKOnxlKgIywsBqNThkNHk2blaCE5foR2sitTugLcK70y9q2NbpHNwXYQKT7Hz94O2ehh8Lj7XbfJw-XF_fl1Nr-9ujk_nWea1zJkuVBtCVJgqXjJpO6g5ahrrZXKa6xbwFz1krdd3Vat6HQvNMhSag5Y1V3eF9vk8Mu7dNNzRB-a0XiNwwAWp-gbnv6vLpkoRUL3_6FPU3Q2TddwJUpVyPyTOvqitJu8d9g3S2fG9NSGs2a1leZvKwk--FaC1zD0Dqw2_vdEzirBKll8ADQnjkU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1846835264</pqid></control><display><type>article</type><title>Simulation of the resistive state of superconducting films in a magnetic field on the basis of the nonstationary Ginzburg-Landau equation</title><source>SpringerNature Complete Journals</source><creator>VYSHESLAVTSEV, P. P ; KURIN, V. V ; NEFEDOV, I. M ; SHERESHEVSKY, I. A ; ANDRONOV, A. A</creator><creatorcontrib>VYSHESLAVTSEV, P. P ; KURIN, V. V ; NEFEDOV, I. M ; SHERESHEVSKY, I. A ; ANDRONOV, A. A</creatorcontrib><description>By numerical simulation of the temporal two-dimensional Ginzburg-Landau equation, we study the resistive state in superconducting bridges with dimensions ξ d λ. It is found that the basis of the resistive state here is, as for d λ, the vortical structures (vortices) whose motion defines the resistive state. It is shown that the motion of vortices is stochastic in a certain range of currents and magnetic fields. We give a classification of possible dynamic and stochastic modes and examine the transitions from the current flow mode, which is observed for large magnetic fields and small transport currents, to the mode of fast phase slippage. The symmetry breaking effect of the resistive state, which results in cross tension with a quadrupole structure, has been detected.[PUBLICATION ABSTRACT]</description><identifier>ISSN: 0033-8443</identifier><identifier>EISSN: 1573-9120</identifier><identifier>DOI: 10.1007/BF02677831</identifier><identifier>CODEN: RPQEAC</identifier><language>eng</language><publisher>Secausus, NJ: Springer</publisher><subject>Broken symmetry ; Computational fluid dynamics ; Computer simulation ; Fluid flow ; Magnetic fields ; Mathematical analysis ; Slippage ; Stochasticity ; Vortices</subject><ispartof>Radiophysics and quantum electronics, 1997, Vol.40 (1-2), p.139-151</ispartof><rights>1998 INIST-CNRS</rights><rights>Plenum Publishing Corporation 1997</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c195t-248b6a54e681605cdab1ec9cc8829e9bae28f51bd9b7b4dcf4ca565c1ae79d2f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2074075$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>VYSHESLAVTSEV, P. P</creatorcontrib><creatorcontrib>KURIN, V. V</creatorcontrib><creatorcontrib>NEFEDOV, I. M</creatorcontrib><creatorcontrib>SHERESHEVSKY, I. A</creatorcontrib><creatorcontrib>ANDRONOV, A. A</creatorcontrib><title>Simulation of the resistive state of superconducting films in a magnetic field on the basis of the nonstationary Ginzburg-Landau equation</title><title>Radiophysics and quantum electronics</title><description>By numerical simulation of the temporal two-dimensional Ginzburg-Landau equation, we study the resistive state in superconducting bridges with dimensions ξ d λ. It is found that the basis of the resistive state here is, as for d λ, the vortical structures (vortices) whose motion defines the resistive state. It is shown that the motion of vortices is stochastic in a certain range of currents and magnetic fields. We give a classification of possible dynamic and stochastic modes and examine the transitions from the current flow mode, which is observed for large magnetic fields and small transport currents, to the mode of fast phase slippage. The symmetry breaking effect of the resistive state, which results in cross tension with a quadrupole structure, has been detected.[PUBLICATION ABSTRACT]</description><subject>Broken symmetry</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Fluid flow</subject><subject>Magnetic fields</subject><subject>Mathematical analysis</subject><subject>Slippage</subject><subject>Stochasticity</subject><subject>Vortices</subject><issn>0033-8443</issn><issn>1573-9120</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkctKxTAQhoMoeLxsfIKALkSoJm3SpksVb3DAhbou03R6jLTpMRdB38C3NscruBr458uXSYaQPc6OOWPVydkly8uqUgVfIzMuqyKrec7WyYyxosiUEMUm2fL-ibGECzUj73dmjAMEM1k69TQ8InXojQ_mBakPEHAV-7hEpyfbRR2MXdDeDKOnxlKgIywsBqNThkNHk2blaCE5foR2sitTugLcK70y9q2NbpHNwXYQKT7Hz94O2ehh8Lj7XbfJw-XF_fl1Nr-9ujk_nWea1zJkuVBtCVJgqXjJpO6g5ahrrZXKa6xbwFz1krdd3Vat6HQvNMhSag5Y1V3eF9vk8Mu7dNNzRB-a0XiNwwAWp-gbnv6vLpkoRUL3_6FPU3Q2TddwJUpVyPyTOvqitJu8d9g3S2fG9NSGs2a1leZvKwk--FaC1zD0Dqw2_vdEzirBKll8ADQnjkU</recordid><startdate>1997</startdate><enddate>1997</enddate><creator>VYSHESLAVTSEV, P. P</creator><creator>KURIN, V. V</creator><creator>NEFEDOV, I. M</creator><creator>SHERESHEVSKY, I. A</creator><creator>ANDRONOV, A. A</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>1997</creationdate><title>Simulation of the resistive state of superconducting films in a magnetic field on the basis of the nonstationary Ginzburg-Landau equation</title><author>VYSHESLAVTSEV, P. P ; KURIN, V. V ; NEFEDOV, I. M ; SHERESHEVSKY, I. A ; ANDRONOV, A. A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c195t-248b6a54e681605cdab1ec9cc8829e9bae28f51bd9b7b4dcf4ca565c1ae79d2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Broken symmetry</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Fluid flow</topic><topic>Magnetic fields</topic><topic>Mathematical analysis</topic><topic>Slippage</topic><topic>Stochasticity</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>VYSHESLAVTSEV, P. P</creatorcontrib><creatorcontrib>KURIN, V. V</creatorcontrib><creatorcontrib>NEFEDOV, I. M</creatorcontrib><creatorcontrib>SHERESHEVSKY, I. A</creatorcontrib><creatorcontrib>ANDRONOV, A. A</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>Radiophysics and quantum electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>VYSHESLAVTSEV, P. P</au><au>KURIN, V. V</au><au>NEFEDOV, I. M</au><au>SHERESHEVSKY, I. A</au><au>ANDRONOV, A. A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation of the resistive state of superconducting films in a magnetic field on the basis of the nonstationary Ginzburg-Landau equation</atitle><jtitle>Radiophysics and quantum electronics</jtitle><date>1997</date><risdate>1997</risdate><volume>40</volume><issue>1-2</issue><spage>139</spage><epage>151</epage><pages>139-151</pages><issn>0033-8443</issn><eissn>1573-9120</eissn><coden>RPQEAC</coden><abstract>By numerical simulation of the temporal two-dimensional Ginzburg-Landau equation, we study the resistive state in superconducting bridges with dimensions ξ d λ. It is found that the basis of the resistive state here is, as for d λ, the vortical structures (vortices) whose motion defines the resistive state. It is shown that the motion of vortices is stochastic in a certain range of currents and magnetic fields. We give a classification of possible dynamic and stochastic modes and examine the transitions from the current flow mode, which is observed for large magnetic fields and small transport currents, to the mode of fast phase slippage. The symmetry breaking effect of the resistive state, which results in cross tension with a quadrupole structure, has been detected.[PUBLICATION ABSTRACT]</abstract><cop>Secausus, NJ</cop><pub>Springer</pub><doi>10.1007/BF02677831</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0033-8443
ispartof Radiophysics and quantum electronics, 1997, Vol.40 (1-2), p.139-151
issn 0033-8443
1573-9120
language eng
recordid cdi_proquest_miscellaneous_1677960464
source SpringerNature Complete Journals
subjects Broken symmetry
Computational fluid dynamics
Computer simulation
Fluid flow
Magnetic fields
Mathematical analysis
Slippage
Stochasticity
Vortices
title Simulation of the resistive state of superconducting films in a magnetic field on the basis of the nonstationary Ginzburg-Landau equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T07%3A48%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20of%20the%20resistive%20state%20of%20superconducting%20films%20in%20a%20magnetic%20field%20on%20the%20basis%20of%20the%20nonstationary%20Ginzburg-Landau%20equation&rft.jtitle=Radiophysics%20and%20quantum%20electronics&rft.au=VYSHESLAVTSEV,%20P.%20P&rft.date=1997&rft.volume=40&rft.issue=1-2&rft.spage=139&rft.epage=151&rft.pages=139-151&rft.issn=0033-8443&rft.eissn=1573-9120&rft.coden=RPQEAC&rft_id=info:doi/10.1007/BF02677831&rft_dat=%3Cproquest_cross%3E4272460411%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1846835264&rft_id=info:pmid/&rfr_iscdi=true