Evaluation of non-linear buckling loads of geometrically imperfect composite cylinders and cones with the Ritz method

A semi-analytical model to predict the non-linear behavior of unstiffened cylinders and cones considering initial geometric imperfections and various loads and boundary conditions is presented. The formulation is developed using the Classical Laminated Plate Theory (CLPT) and Donnell’s equations, so...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Composite structures 2015-04, Vol.122, p.284-299
Hauptverfasser: Castro, Saullo G.P., Mittelstedt, Christian, Monteiro, Francisco A.C., Degenhardt, Richard, Ziegmann, Gerhard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 299
container_issue
container_start_page 284
container_title Composite structures
container_volume 122
creator Castro, Saullo G.P.
Mittelstedt, Christian
Monteiro, Francisco A.C.
Degenhardt, Richard
Ziegmann, Gerhard
description A semi-analytical model to predict the non-linear behavior of unstiffened cylinders and cones considering initial geometric imperfections and various loads and boundary conditions is presented. The formulation is developed using the Classical Laminated Plate Theory (CLPT) and Donnell’s equations, solving for the complete displacement field. The non-linear static problem is solved using a modified Newton–Raphson algorithm with line-search. A numerical integration scheme for the non-linear matrices is proposed and details regarding the implementation of the proposed method are given. Two methods to include measured imperfections into the analyses are presented and for one method the effect of using different approximation levels for the imperfection field on the non-linear response is investigated, and a minimum approximation accuracy that should be used is determined. The semi-analytical results are verified using finite elements and previous models from the literature. The implemented routines are distributed on-line and are based on a matrix notation simply applicable to other problems.
doi_str_mv 10.1016/j.compstruct.2014.11.050
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677957699</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S026382231400631X</els_id><sourcerecordid>1677957699</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-e38143e095cc4f5a9219ab0bbd4a13bd2403fd0838ae0979c86ff750d84e9293</originalsourceid><addsrcrecordid>eNqFkE9r3DAQxUVoIdu030HHXuxqLP-Rju2ybQKBQMldyNJ4Vxvb2krylu2nj8wWcsxphpn3HjM_QiiwEhi0346l8dMpprCYVFYM6hKgZA27IRsQnSyAieYD2bCq5YWoKn5LPsV4ZIyJGmBDlt1Zj4tOzs_UD3T2czG6GXWg_WJecruno9c2rss9-glTcEaP44W66YRhQJPoeoCPLiE1l-ywGCLVs83zGSP969KBpgPS3y79ozng4O1n8nHQY8Qv_-sdef65e97eF49Pvx623x8LwxtIBXIBNUcmG2PqodGyAql71ve21sB7W9WMD5YJLnQWddKIdhi6hllRo6wkvyNfr7Gn4P8sGJOaXDQ4jnpGv0QFbdfJpmvlKhVXqQk-xoCDOgU36XBRwNQKWh3VG2i1glYAKoPO1h9XK-ZPzg6DisbhbNC6kPEo6937Ia-WJo8_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1677957699</pqid></control><display><type>article</type><title>Evaluation of non-linear buckling loads of geometrically imperfect composite cylinders and cones with the Ritz method</title><source>Elsevier ScienceDirect Journals</source><creator>Castro, Saullo G.P. ; Mittelstedt, Christian ; Monteiro, Francisco A.C. ; Degenhardt, Richard ; Ziegmann, Gerhard</creator><creatorcontrib>Castro, Saullo G.P. ; Mittelstedt, Christian ; Monteiro, Francisco A.C. ; Degenhardt, Richard ; Ziegmann, Gerhard</creatorcontrib><description>A semi-analytical model to predict the non-linear behavior of unstiffened cylinders and cones considering initial geometric imperfections and various loads and boundary conditions is presented. The formulation is developed using the Classical Laminated Plate Theory (CLPT) and Donnell’s equations, solving for the complete displacement field. The non-linear static problem is solved using a modified Newton–Raphson algorithm with line-search. A numerical integration scheme for the non-linear matrices is proposed and details regarding the implementation of the proposed method are given. Two methods to include measured imperfections into the analyses are presented and for one method the effect of using different approximation levels for the imperfection field on the non-linear response is investigated, and a minimum approximation accuracy that should be used is determined. The semi-analytical results are verified using finite elements and previous models from the literature. The implemented routines are distributed on-line and are based on a matrix notation simply applicable to other problems.</description><identifier>ISSN: 0263-8223</identifier><identifier>EISSN: 1879-1085</identifier><identifier>DOI: 10.1016/j.compstruct.2014.11.050</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Algorithms ; Approximation ; Composite ; Cone ; Cones ; Cylinder ; Cylinders ; Defects ; Geometric imperfection ; Laminated plate theory ; Mathematical analysis ; Mathematical models ; Non-linear static ; Nonlinearity ; Ritz method</subject><ispartof>Composite structures, 2015-04, Vol.122, p.284-299</ispartof><rights>2014 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-e38143e095cc4f5a9219ab0bbd4a13bd2403fd0838ae0979c86ff750d84e9293</citedby><cites>FETCH-LOGICAL-c351t-e38143e095cc4f5a9219ab0bbd4a13bd2403fd0838ae0979c86ff750d84e9293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S026382231400631X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Castro, Saullo G.P.</creatorcontrib><creatorcontrib>Mittelstedt, Christian</creatorcontrib><creatorcontrib>Monteiro, Francisco A.C.</creatorcontrib><creatorcontrib>Degenhardt, Richard</creatorcontrib><creatorcontrib>Ziegmann, Gerhard</creatorcontrib><title>Evaluation of non-linear buckling loads of geometrically imperfect composite cylinders and cones with the Ritz method</title><title>Composite structures</title><description>A semi-analytical model to predict the non-linear behavior of unstiffened cylinders and cones considering initial geometric imperfections and various loads and boundary conditions is presented. The formulation is developed using the Classical Laminated Plate Theory (CLPT) and Donnell’s equations, solving for the complete displacement field. The non-linear static problem is solved using a modified Newton–Raphson algorithm with line-search. A numerical integration scheme for the non-linear matrices is proposed and details regarding the implementation of the proposed method are given. Two methods to include measured imperfections into the analyses are presented and for one method the effect of using different approximation levels for the imperfection field on the non-linear response is investigated, and a minimum approximation accuracy that should be used is determined. The semi-analytical results are verified using finite elements and previous models from the literature. The implemented routines are distributed on-line and are based on a matrix notation simply applicable to other problems.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Composite</subject><subject>Cone</subject><subject>Cones</subject><subject>Cylinder</subject><subject>Cylinders</subject><subject>Defects</subject><subject>Geometric imperfection</subject><subject>Laminated plate theory</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Non-linear static</subject><subject>Nonlinearity</subject><subject>Ritz method</subject><issn>0263-8223</issn><issn>1879-1085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkE9r3DAQxUVoIdu030HHXuxqLP-Rju2ybQKBQMldyNJ4Vxvb2krylu2nj8wWcsxphpn3HjM_QiiwEhi0346l8dMpprCYVFYM6hKgZA27IRsQnSyAieYD2bCq5YWoKn5LPsV4ZIyJGmBDlt1Zj4tOzs_UD3T2czG6GXWg_WJecruno9c2rss9-glTcEaP44W66YRhQJPoeoCPLiE1l-ywGCLVs83zGSP969KBpgPS3y79ozng4O1n8nHQY8Qv_-sdef65e97eF49Pvx623x8LwxtIBXIBNUcmG2PqodGyAql71ve21sB7W9WMD5YJLnQWddKIdhi6hllRo6wkvyNfr7Gn4P8sGJOaXDQ4jnpGv0QFbdfJpmvlKhVXqQk-xoCDOgU36XBRwNQKWh3VG2i1glYAKoPO1h9XK-ZPzg6DisbhbNC6kPEo6937Ia-WJo8_</recordid><startdate>201504</startdate><enddate>201504</enddate><creator>Castro, Saullo G.P.</creator><creator>Mittelstedt, Christian</creator><creator>Monteiro, Francisco A.C.</creator><creator>Degenhardt, Richard</creator><creator>Ziegmann, Gerhard</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>201504</creationdate><title>Evaluation of non-linear buckling loads of geometrically imperfect composite cylinders and cones with the Ritz method</title><author>Castro, Saullo G.P. ; Mittelstedt, Christian ; Monteiro, Francisco A.C. ; Degenhardt, Richard ; Ziegmann, Gerhard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-e38143e095cc4f5a9219ab0bbd4a13bd2403fd0838ae0979c86ff750d84e9293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Composite</topic><topic>Cone</topic><topic>Cones</topic><topic>Cylinder</topic><topic>Cylinders</topic><topic>Defects</topic><topic>Geometric imperfection</topic><topic>Laminated plate theory</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Non-linear static</topic><topic>Nonlinearity</topic><topic>Ritz method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Castro, Saullo G.P.</creatorcontrib><creatorcontrib>Mittelstedt, Christian</creatorcontrib><creatorcontrib>Monteiro, Francisco A.C.</creatorcontrib><creatorcontrib>Degenhardt, Richard</creatorcontrib><creatorcontrib>Ziegmann, Gerhard</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Composite structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Castro, Saullo G.P.</au><au>Mittelstedt, Christian</au><au>Monteiro, Francisco A.C.</au><au>Degenhardt, Richard</au><au>Ziegmann, Gerhard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of non-linear buckling loads of geometrically imperfect composite cylinders and cones with the Ritz method</atitle><jtitle>Composite structures</jtitle><date>2015-04</date><risdate>2015</risdate><volume>122</volume><spage>284</spage><epage>299</epage><pages>284-299</pages><issn>0263-8223</issn><eissn>1879-1085</eissn><abstract>A semi-analytical model to predict the non-linear behavior of unstiffened cylinders and cones considering initial geometric imperfections and various loads and boundary conditions is presented. The formulation is developed using the Classical Laminated Plate Theory (CLPT) and Donnell’s equations, solving for the complete displacement field. The non-linear static problem is solved using a modified Newton–Raphson algorithm with line-search. A numerical integration scheme for the non-linear matrices is proposed and details regarding the implementation of the proposed method are given. Two methods to include measured imperfections into the analyses are presented and for one method the effect of using different approximation levels for the imperfection field on the non-linear response is investigated, and a minimum approximation accuracy that should be used is determined. The semi-analytical results are verified using finite elements and previous models from the literature. The implemented routines are distributed on-line and are based on a matrix notation simply applicable to other problems.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.compstruct.2014.11.050</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0263-8223
ispartof Composite structures, 2015-04, Vol.122, p.284-299
issn 0263-8223
1879-1085
language eng
recordid cdi_proquest_miscellaneous_1677957699
source Elsevier ScienceDirect Journals
subjects Algorithms
Approximation
Composite
Cone
Cones
Cylinder
Cylinders
Defects
Geometric imperfection
Laminated plate theory
Mathematical analysis
Mathematical models
Non-linear static
Nonlinearity
Ritz method
title Evaluation of non-linear buckling loads of geometrically imperfect composite cylinders and cones with the Ritz method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T05%3A06%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20non-linear%20buckling%20loads%20of%20geometrically%20imperfect%20composite%20cylinders%20and%20cones%20with%20the%20Ritz%20method&rft.jtitle=Composite%20structures&rft.au=Castro,%20Saullo%20G.P.&rft.date=2015-04&rft.volume=122&rft.spage=284&rft.epage=299&rft.pages=284-299&rft.issn=0263-8223&rft.eissn=1879-1085&rft_id=info:doi/10.1016/j.compstruct.2014.11.050&rft_dat=%3Cproquest_cross%3E1677957699%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1677957699&rft_id=info:pmid/&rft_els_id=S026382231400631X&rfr_iscdi=true