Evaluation of non-linear buckling loads of geometrically imperfect composite cylinders and cones with the Ritz method
A semi-analytical model to predict the non-linear behavior of unstiffened cylinders and cones considering initial geometric imperfections and various loads and boundary conditions is presented. The formulation is developed using the Classical Laminated Plate Theory (CLPT) and Donnell’s equations, so...
Gespeichert in:
Veröffentlicht in: | Composite structures 2015-04, Vol.122, p.284-299 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 299 |
---|---|
container_issue | |
container_start_page | 284 |
container_title | Composite structures |
container_volume | 122 |
creator | Castro, Saullo G.P. Mittelstedt, Christian Monteiro, Francisco A.C. Degenhardt, Richard Ziegmann, Gerhard |
description | A semi-analytical model to predict the non-linear behavior of unstiffened cylinders and cones considering initial geometric imperfections and various loads and boundary conditions is presented. The formulation is developed using the Classical Laminated Plate Theory (CLPT) and Donnell’s equations, solving for the complete displacement field. The non-linear static problem is solved using a modified Newton–Raphson algorithm with line-search. A numerical integration scheme for the non-linear matrices is proposed and details regarding the implementation of the proposed method are given. Two methods to include measured imperfections into the analyses are presented and for one method the effect of using different approximation levels for the imperfection field on the non-linear response is investigated, and a minimum approximation accuracy that should be used is determined. The semi-analytical results are verified using finite elements and previous models from the literature. The implemented routines are distributed on-line and are based on a matrix notation simply applicable to other problems. |
doi_str_mv | 10.1016/j.compstruct.2014.11.050 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677957699</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S026382231400631X</els_id><sourcerecordid>1677957699</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-e38143e095cc4f5a9219ab0bbd4a13bd2403fd0838ae0979c86ff750d84e9293</originalsourceid><addsrcrecordid>eNqFkE9r3DAQxUVoIdu030HHXuxqLP-Rju2ybQKBQMldyNJ4Vxvb2krylu2nj8wWcsxphpn3HjM_QiiwEhi0346l8dMpprCYVFYM6hKgZA27IRsQnSyAieYD2bCq5YWoKn5LPsV4ZIyJGmBDlt1Zj4tOzs_UD3T2czG6GXWg_WJecruno9c2rss9-glTcEaP44W66YRhQJPoeoCPLiE1l-ywGCLVs83zGSP969KBpgPS3y79ozng4O1n8nHQY8Qv_-sdef65e97eF49Pvx623x8LwxtIBXIBNUcmG2PqodGyAql71ve21sB7W9WMD5YJLnQWddKIdhi6hllRo6wkvyNfr7Gn4P8sGJOaXDQ4jnpGv0QFbdfJpmvlKhVXqQk-xoCDOgU36XBRwNQKWh3VG2i1glYAKoPO1h9XK-ZPzg6DisbhbNC6kPEo6937Ia-WJo8_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1677957699</pqid></control><display><type>article</type><title>Evaluation of non-linear buckling loads of geometrically imperfect composite cylinders and cones with the Ritz method</title><source>Elsevier ScienceDirect Journals</source><creator>Castro, Saullo G.P. ; Mittelstedt, Christian ; Monteiro, Francisco A.C. ; Degenhardt, Richard ; Ziegmann, Gerhard</creator><creatorcontrib>Castro, Saullo G.P. ; Mittelstedt, Christian ; Monteiro, Francisco A.C. ; Degenhardt, Richard ; Ziegmann, Gerhard</creatorcontrib><description>A semi-analytical model to predict the non-linear behavior of unstiffened cylinders and cones considering initial geometric imperfections and various loads and boundary conditions is presented. The formulation is developed using the Classical Laminated Plate Theory (CLPT) and Donnell’s equations, solving for the complete displacement field. The non-linear static problem is solved using a modified Newton–Raphson algorithm with line-search. A numerical integration scheme for the non-linear matrices is proposed and details regarding the implementation of the proposed method are given. Two methods to include measured imperfections into the analyses are presented and for one method the effect of using different approximation levels for the imperfection field on the non-linear response is investigated, and a minimum approximation accuracy that should be used is determined. The semi-analytical results are verified using finite elements and previous models from the literature. The implemented routines are distributed on-line and are based on a matrix notation simply applicable to other problems.</description><identifier>ISSN: 0263-8223</identifier><identifier>EISSN: 1879-1085</identifier><identifier>DOI: 10.1016/j.compstruct.2014.11.050</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Algorithms ; Approximation ; Composite ; Cone ; Cones ; Cylinder ; Cylinders ; Defects ; Geometric imperfection ; Laminated plate theory ; Mathematical analysis ; Mathematical models ; Non-linear static ; Nonlinearity ; Ritz method</subject><ispartof>Composite structures, 2015-04, Vol.122, p.284-299</ispartof><rights>2014 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-e38143e095cc4f5a9219ab0bbd4a13bd2403fd0838ae0979c86ff750d84e9293</citedby><cites>FETCH-LOGICAL-c351t-e38143e095cc4f5a9219ab0bbd4a13bd2403fd0838ae0979c86ff750d84e9293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S026382231400631X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Castro, Saullo G.P.</creatorcontrib><creatorcontrib>Mittelstedt, Christian</creatorcontrib><creatorcontrib>Monteiro, Francisco A.C.</creatorcontrib><creatorcontrib>Degenhardt, Richard</creatorcontrib><creatorcontrib>Ziegmann, Gerhard</creatorcontrib><title>Evaluation of non-linear buckling loads of geometrically imperfect composite cylinders and cones with the Ritz method</title><title>Composite structures</title><description>A semi-analytical model to predict the non-linear behavior of unstiffened cylinders and cones considering initial geometric imperfections and various loads and boundary conditions is presented. The formulation is developed using the Classical Laminated Plate Theory (CLPT) and Donnell’s equations, solving for the complete displacement field. The non-linear static problem is solved using a modified Newton–Raphson algorithm with line-search. A numerical integration scheme for the non-linear matrices is proposed and details regarding the implementation of the proposed method are given. Two methods to include measured imperfections into the analyses are presented and for one method the effect of using different approximation levels for the imperfection field on the non-linear response is investigated, and a minimum approximation accuracy that should be used is determined. The semi-analytical results are verified using finite elements and previous models from the literature. The implemented routines are distributed on-line and are based on a matrix notation simply applicable to other problems.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Composite</subject><subject>Cone</subject><subject>Cones</subject><subject>Cylinder</subject><subject>Cylinders</subject><subject>Defects</subject><subject>Geometric imperfection</subject><subject>Laminated plate theory</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Non-linear static</subject><subject>Nonlinearity</subject><subject>Ritz method</subject><issn>0263-8223</issn><issn>1879-1085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkE9r3DAQxUVoIdu030HHXuxqLP-Rju2ybQKBQMldyNJ4Vxvb2krylu2nj8wWcsxphpn3HjM_QiiwEhi0346l8dMpprCYVFYM6hKgZA27IRsQnSyAieYD2bCq5YWoKn5LPsV4ZIyJGmBDlt1Zj4tOzs_UD3T2czG6GXWg_WJecruno9c2rss9-glTcEaP44W66YRhQJPoeoCPLiE1l-ywGCLVs83zGSP969KBpgPS3y79ozng4O1n8nHQY8Qv_-sdef65e97eF49Pvx623x8LwxtIBXIBNUcmG2PqodGyAql71ve21sB7W9WMD5YJLnQWddKIdhi6hllRo6wkvyNfr7Gn4P8sGJOaXDQ4jnpGv0QFbdfJpmvlKhVXqQk-xoCDOgU36XBRwNQKWh3VG2i1glYAKoPO1h9XK-ZPzg6DisbhbNC6kPEo6937Ia-WJo8_</recordid><startdate>201504</startdate><enddate>201504</enddate><creator>Castro, Saullo G.P.</creator><creator>Mittelstedt, Christian</creator><creator>Monteiro, Francisco A.C.</creator><creator>Degenhardt, Richard</creator><creator>Ziegmann, Gerhard</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>201504</creationdate><title>Evaluation of non-linear buckling loads of geometrically imperfect composite cylinders and cones with the Ritz method</title><author>Castro, Saullo G.P. ; Mittelstedt, Christian ; Monteiro, Francisco A.C. ; Degenhardt, Richard ; Ziegmann, Gerhard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-e38143e095cc4f5a9219ab0bbd4a13bd2403fd0838ae0979c86ff750d84e9293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Composite</topic><topic>Cone</topic><topic>Cones</topic><topic>Cylinder</topic><topic>Cylinders</topic><topic>Defects</topic><topic>Geometric imperfection</topic><topic>Laminated plate theory</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Non-linear static</topic><topic>Nonlinearity</topic><topic>Ritz method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Castro, Saullo G.P.</creatorcontrib><creatorcontrib>Mittelstedt, Christian</creatorcontrib><creatorcontrib>Monteiro, Francisco A.C.</creatorcontrib><creatorcontrib>Degenhardt, Richard</creatorcontrib><creatorcontrib>Ziegmann, Gerhard</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Composite structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Castro, Saullo G.P.</au><au>Mittelstedt, Christian</au><au>Monteiro, Francisco A.C.</au><au>Degenhardt, Richard</au><au>Ziegmann, Gerhard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of non-linear buckling loads of geometrically imperfect composite cylinders and cones with the Ritz method</atitle><jtitle>Composite structures</jtitle><date>2015-04</date><risdate>2015</risdate><volume>122</volume><spage>284</spage><epage>299</epage><pages>284-299</pages><issn>0263-8223</issn><eissn>1879-1085</eissn><abstract>A semi-analytical model to predict the non-linear behavior of unstiffened cylinders and cones considering initial geometric imperfections and various loads and boundary conditions is presented. The formulation is developed using the Classical Laminated Plate Theory (CLPT) and Donnell’s equations, solving for the complete displacement field. The non-linear static problem is solved using a modified Newton–Raphson algorithm with line-search. A numerical integration scheme for the non-linear matrices is proposed and details regarding the implementation of the proposed method are given. Two methods to include measured imperfections into the analyses are presented and for one method the effect of using different approximation levels for the imperfection field on the non-linear response is investigated, and a minimum approximation accuracy that should be used is determined. The semi-analytical results are verified using finite elements and previous models from the literature. The implemented routines are distributed on-line and are based on a matrix notation simply applicable to other problems.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.compstruct.2014.11.050</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0263-8223 |
ispartof | Composite structures, 2015-04, Vol.122, p.284-299 |
issn | 0263-8223 1879-1085 |
language | eng |
recordid | cdi_proquest_miscellaneous_1677957699 |
source | Elsevier ScienceDirect Journals |
subjects | Algorithms Approximation Composite Cone Cones Cylinder Cylinders Defects Geometric imperfection Laminated plate theory Mathematical analysis Mathematical models Non-linear static Nonlinearity Ritz method |
title | Evaluation of non-linear buckling loads of geometrically imperfect composite cylinders and cones with the Ritz method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T05%3A06%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20non-linear%20buckling%20loads%20of%20geometrically%20imperfect%20composite%20cylinders%20and%20cones%20with%20the%20Ritz%20method&rft.jtitle=Composite%20structures&rft.au=Castro,%20Saullo%20G.P.&rft.date=2015-04&rft.volume=122&rft.spage=284&rft.epage=299&rft.pages=284-299&rft.issn=0263-8223&rft.eissn=1879-1085&rft_id=info:doi/10.1016/j.compstruct.2014.11.050&rft_dat=%3Cproquest_cross%3E1677957699%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1677957699&rft_id=info:pmid/&rft_els_id=S026382231400631X&rfr_iscdi=true |