Existence and uniqueness for a class of iterative fractional differential equations

The presence of a self-mapping increases the difficulty in proving the existence and uniqueness of solutions for general iterative fractional differential equations. In this article, we provide conditions for the existence and uniqueness of solutions for the initial value problem. We also determine...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in difference equations 2015-03, Vol.2015 (1), p.1-13, Article 78
Hauptverfasser: Ibrahim, Rabha W, Kılıçman, Adem, Damag, Faten H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13
container_issue 1
container_start_page 1
container_title Advances in difference equations
container_volume 2015
creator Ibrahim, Rabha W
Kılıçman, Adem
Damag, Faten H
description The presence of a self-mapping increases the difficulty in proving the existence and uniqueness of solutions for general iterative fractional differential equations. In this article, we provide conditions for the existence and uniqueness of solutions for the initial value problem. We also determine the Burton stability of such equations. The arbitrary order case is taken in the sense of Riemann-Liouville fractional operators.
doi_str_mv 10.1186/s13662-015-0421-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677955874</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1677955874</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-961b30c0eb4a82ce2d751e22e4a9fae5c82129cba04b91846c88d9ac84d655033</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wFvAi5fVJJvNJkcp9QMKHtRzyGYnkrLNtsmu2H9vlnoogsxhPnjeYeZF6JqSO0qluE-0FIIVhFYF4YwW-xM0o0LWBZW8Pj2qz9FFSmtCmOJSztDb8tunAYIFbEKLx-B3IwRICbs-YoNtZ3LdO-wHiGbwX4BdNHbwfTAdbr1zECEMPjewG800T5fozJkuwdVvnqOPx-X74rlYvT69LB5WhS0VGwolaFMSS6DhRjILrK0rCowBN8oZqKxklCnbGMIblU8XVspWGSt5K6qKlOUc3R72bmOfr06D3vhkoetMgH5Mmoq6VlUla57Rmz_ouh9jfmGiBMkh2ETRA2Vjn1IEp7fRb0zca0r0ZLM-2KyzzXqyWe-zhh00KbPhE-LR5n9FP7XlgL8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1660606624</pqid></control><display><type>article</type><title>Existence and uniqueness for a class of iterative fractional differential equations</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Ibrahim, Rabha W ; Kılıçman, Adem ; Damag, Faten H</creator><creatorcontrib>Ibrahim, Rabha W ; Kılıçman, Adem ; Damag, Faten H</creatorcontrib><description>The presence of a self-mapping increases the difficulty in proving the existence and uniqueness of solutions for general iterative fractional differential equations. In this article, we provide conditions for the existence and uniqueness of solutions for the initial value problem. We also determine the Burton stability of such equations. The arbitrary order case is taken in the sense of Riemann-Liouville fractional operators.</description><identifier>ISSN: 1687-1847</identifier><identifier>ISSN: 1687-1839</identifier><identifier>EISSN: 1687-1847</identifier><identifier>DOI: 10.1186/s13662-015-0421-y</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Difference and Functional Equations ; Difference equations ; Differential equations ; Functional Analysis ; Initial value problems ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Operators ; Ordinary Differential Equations ; Partial Differential Equations ; Recent Progress in Differential and Difference Equations ; Stability ; Uniqueness</subject><ispartof>Advances in difference equations, 2015-03, Vol.2015 (1), p.1-13, Article 78</ispartof><rights>Ibrahim et al.; licensee Springer. 2015</rights><rights>The Author(s) 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-961b30c0eb4a82ce2d751e22e4a9fae5c82129cba04b91846c88d9ac84d655033</citedby><cites>FETCH-LOGICAL-c392t-961b30c0eb4a82ce2d751e22e4a9fae5c82129cba04b91846c88d9ac84d655033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27923,27924</link.rule.ids></links><search><creatorcontrib>Ibrahim, Rabha W</creatorcontrib><creatorcontrib>Kılıçman, Adem</creatorcontrib><creatorcontrib>Damag, Faten H</creatorcontrib><title>Existence and uniqueness for a class of iterative fractional differential equations</title><title>Advances in difference equations</title><addtitle>Adv Differ Equ</addtitle><description>The presence of a self-mapping increases the difficulty in proving the existence and uniqueness of solutions for general iterative fractional differential equations. In this article, we provide conditions for the existence and uniqueness of solutions for the initial value problem. We also determine the Burton stability of such equations. The arbitrary order case is taken in the sense of Riemann-Liouville fractional operators.</description><subject>Analysis</subject><subject>Difference and Functional Equations</subject><subject>Difference equations</subject><subject>Differential equations</subject><subject>Functional Analysis</subject><subject>Initial value problems</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operators</subject><subject>Ordinary Differential Equations</subject><subject>Partial Differential Equations</subject><subject>Recent Progress in Differential and Difference Equations</subject><subject>Stability</subject><subject>Uniqueness</subject><issn>1687-1847</issn><issn>1687-1839</issn><issn>1687-1847</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1LAzEQhoMoWKs_wFvAi5fVJJvNJkcp9QMKHtRzyGYnkrLNtsmu2H9vlnoogsxhPnjeYeZF6JqSO0qluE-0FIIVhFYF4YwW-xM0o0LWBZW8Pj2qz9FFSmtCmOJSztDb8tunAYIFbEKLx-B3IwRICbs-YoNtZ3LdO-wHiGbwX4BdNHbwfTAdbr1zECEMPjewG800T5fozJkuwdVvnqOPx-X74rlYvT69LB5WhS0VGwolaFMSS6DhRjILrK0rCowBN8oZqKxklCnbGMIblU8XVspWGSt5K6qKlOUc3R72bmOfr06D3vhkoetMgH5Mmoq6VlUla57Rmz_ouh9jfmGiBMkh2ETRA2Vjn1IEp7fRb0zca0r0ZLM-2KyzzXqyWe-zhh00KbPhE-LR5n9FP7XlgL8</recordid><startdate>20150305</startdate><enddate>20150305</enddate><creator>Ibrahim, Rabha W</creator><creator>Kılıçman, Adem</creator><creator>Damag, Faten H</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20150305</creationdate><title>Existence and uniqueness for a class of iterative fractional differential equations</title><author>Ibrahim, Rabha W ; Kılıçman, Adem ; Damag, Faten H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-961b30c0eb4a82ce2d751e22e4a9fae5c82129cba04b91846c88d9ac84d655033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Analysis</topic><topic>Difference and Functional Equations</topic><topic>Difference equations</topic><topic>Differential equations</topic><topic>Functional Analysis</topic><topic>Initial value problems</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operators</topic><topic>Ordinary Differential Equations</topic><topic>Partial Differential Equations</topic><topic>Recent Progress in Differential and Difference Equations</topic><topic>Stability</topic><topic>Uniqueness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ibrahim, Rabha W</creatorcontrib><creatorcontrib>Kılıçman, Adem</creatorcontrib><creatorcontrib>Damag, Faten H</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Advances in difference equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ibrahim, Rabha W</au><au>Kılıçman, Adem</au><au>Damag, Faten H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Existence and uniqueness for a class of iterative fractional differential equations</atitle><jtitle>Advances in difference equations</jtitle><stitle>Adv Differ Equ</stitle><date>2015-03-05</date><risdate>2015</risdate><volume>2015</volume><issue>1</issue><spage>1</spage><epage>13</epage><pages>1-13</pages><artnum>78</artnum><issn>1687-1847</issn><issn>1687-1839</issn><eissn>1687-1847</eissn><abstract>The presence of a self-mapping increases the difficulty in proving the existence and uniqueness of solutions for general iterative fractional differential equations. In this article, we provide conditions for the existence and uniqueness of solutions for the initial value problem. We also determine the Burton stability of such equations. The arbitrary order case is taken in the sense of Riemann-Liouville fractional operators.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1186/s13662-015-0421-y</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-1847
ispartof Advances in difference equations, 2015-03, Vol.2015 (1), p.1-13, Article 78
issn 1687-1847
1687-1839
1687-1847
language eng
recordid cdi_proquest_miscellaneous_1677955874
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Analysis
Difference and Functional Equations
Difference equations
Differential equations
Functional Analysis
Initial value problems
Mathematical analysis
Mathematics
Mathematics and Statistics
Operators
Ordinary Differential Equations
Partial Differential Equations
Recent Progress in Differential and Difference Equations
Stability
Uniqueness
title Existence and uniqueness for a class of iterative fractional differential equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T15%3A04%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Existence%20and%20uniqueness%20for%20a%20class%20of%20iterative%20fractional%20differential%20equations&rft.jtitle=Advances%20in%20difference%20equations&rft.au=Ibrahim,%20Rabha%20W&rft.date=2015-03-05&rft.volume=2015&rft.issue=1&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.artnum=78&rft.issn=1687-1847&rft.eissn=1687-1847&rft_id=info:doi/10.1186/s13662-015-0421-y&rft_dat=%3Cproquest_cross%3E1677955874%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1660606624&rft_id=info:pmid/&rfr_iscdi=true