Xanthan gum: A versatile biopolymer for biomedical and technological applications

ABSTRACT Xanthan gum is an extracellular polymer produced mainly by the bacterium Xanthomonas campestris. Traditionally it plays an important role in industrial applications as thickener, emulsion stabilizer and it has been added to water‐based drilling fluids due to its pseudoplastic behavior and t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied polymer science 2015-06, Vol.132 (23), p.np-n/a
1. Verfasser: Petri, Denise F. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ABSTRACT Xanthan gum is an extracellular polymer produced mainly by the bacterium Xanthomonas campestris. Traditionally it plays an important role in industrial applications as thickener, emulsion stabilizer and it has been added to water‐based drilling fluids due to its pseudoplastic behavior and thermal stability. The structural properties of xanthan in solution can be tuned by the temperature and ionic strength; under high ionic strength or low temperature, xanthan chains are arranged in helical conformation, whereas under low ionic strength or high temperature, xanthan chains are coiled. Xanthan high molecular weight favors the building up of physical and chemical networks, which have been used as carriers for drugs and proteins and as scaffolds for cells. In combination with other polymers xanthan has been applied as excipient in tablets or as supporting hydrogels for drug release applications, particularly due to its acid resistance. The large versatility of xanthan gum opens the possibility for the creation of new architectures and additional applications involving this fascinating polymer. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015, 132, 42035.
ISSN:0021-8995
1097-4628
DOI:10.1002/app.42035