Stochastic identification of imperfections in a submerged shell structure

•Geometric imperfection parameters are estimated in a fluid–structure interaction system.•Inverse problem solved using Markov chain Monte Carlo sampling.•Non-contact approach to damage identification is explored.•Uncertainty surrounding the parameters is quantified. Accurate predictions of the buckl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer methods in applied mechanics and engineering 2014-04, Vol.272, p.58-82
Hauptverfasser: Reed, H.M., Earls, C.J., Nichols, J.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 82
container_issue
container_start_page 58
container_title Computer methods in applied mechanics and engineering
container_volume 272
creator Reed, H.M.
Earls, C.J.
Nichols, J.M.
description •Geometric imperfection parameters are estimated in a fluid–structure interaction system.•Inverse problem solved using Markov chain Monte Carlo sampling.•Non-contact approach to damage identification is explored.•Uncertainty surrounding the parameters is quantified. Accurate predictions of the buckling load in imperfection sensitive shell structures requires precise knowledge of the location and magnitude of any geometric imperfections in the shell (e.g. dents). This work describes a non-contact approach to identifying such imperfections in a submerged shell structure. By monitoring the acoustic pressure field at discrete points proximal to a shell structure excited by a cyclic membrane (i.e. in-plane) loading, it is noticed that parameters, describing small scale denting, can be identified. In order to perform the identification, a fluid-structure model that predicts the spatio-temporal pressure field is required. This model is described in detail and includes the predicted effects of the imperfection on the observations. A Bayesian, Markov chain Monte Carlo approach is then used to generate the imperfection parameter estimates and quantify the uncertainty in those estimates. Additionally: for cases involving the occurrence of an unknown number of dents, reversible jump Markov chain Monte Carlo (RJMCMC) methods are employed in this work.
doi_str_mv 10.1016/j.cma.2014.01.003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677952361</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045782514000085</els_id><sourcerecordid>1551098893</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-658acf1a4bb21e5c3c63f7a8d6fded9b9e96d88491939624cedbbe80e405c5733</originalsourceid><addsrcrecordid>eNqFkE9LxDAQxYMouK5-AG89emnNNE2a4EkW_ywseFDPIU2mbpZtuyat4Lc3ZT3rXIaB9x5vfoRcAy2AgrjdFbYzRUmhKigUlLITsgBZq7wEJk_JgtKK57Us-Tm5iHFH00goF2T9Og52a-LobeYd9qNvvTWjH_psaDPfHTC0aOc7Zr7PTBanpsPwgS6LW9zvsziGyY5TwEty1pp9xKvfvSTvjw9vq-d88_K0Xt1vcssEG3PBpbEtmKppSkBumRWsrY10onXoVKNQCSdlpUAxJcrKomsalBQryi2vGVuSm2PuIQyfE8ZRdz7aVMX0OExRg6hrxUsm4H8p50CVlGpOhaPUhiHGgK0-BN-Z8K2B6pmw3ulEWM-ENQWdCCfP3dGD6d0vj0FH67FPjX1IzLQb_B_uH3aGhD4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1551098893</pqid></control><display><type>article</type><title>Stochastic identification of imperfections in a submerged shell structure</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Reed, H.M. ; Earls, C.J. ; Nichols, J.M.</creator><creatorcontrib>Reed, H.M. ; Earls, C.J. ; Nichols, J.M.</creatorcontrib><description>•Geometric imperfection parameters are estimated in a fluid–structure interaction system.•Inverse problem solved using Markov chain Monte Carlo sampling.•Non-contact approach to damage identification is explored.•Uncertainty surrounding the parameters is quantified. Accurate predictions of the buckling load in imperfection sensitive shell structures requires precise knowledge of the location and magnitude of any geometric imperfections in the shell (e.g. dents). This work describes a non-contact approach to identifying such imperfections in a submerged shell structure. By monitoring the acoustic pressure field at discrete points proximal to a shell structure excited by a cyclic membrane (i.e. in-plane) loading, it is noticed that parameters, describing small scale denting, can be identified. In order to perform the identification, a fluid-structure model that predicts the spatio-temporal pressure field is required. This model is described in detail and includes the predicted effects of the imperfection on the observations. A Bayesian, Markov chain Monte Carlo approach is then used to generate the imperfection parameter estimates and quantify the uncertainty in those estimates. Additionally: for cases involving the occurrence of an unknown number of dents, reversible jump Markov chain Monte Carlo (RJMCMC) methods are employed in this work.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/j.cma.2014.01.003</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Bayesian estimation ; Computer simulation ; Damage identification ; Defects ; Estimates ; Fluid structure interaction ; Markov chain Monte Carlo ; Markov chains ; Mathematical models ; Monte Carlo methods ; Reversible jump Markov chain Monte Carlo ; Shell structure ; Shells ; Submerged</subject><ispartof>Computer methods in applied mechanics and engineering, 2014-04, Vol.272, p.58-82</ispartof><rights>2014 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-658acf1a4bb21e5c3c63f7a8d6fded9b9e96d88491939624cedbbe80e405c5733</citedby><cites>FETCH-LOGICAL-c363t-658acf1a4bb21e5c3c63f7a8d6fded9b9e96d88491939624cedbbe80e405c5733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cma.2014.01.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3541,27915,27916,45986</link.rule.ids></links><search><creatorcontrib>Reed, H.M.</creatorcontrib><creatorcontrib>Earls, C.J.</creatorcontrib><creatorcontrib>Nichols, J.M.</creatorcontrib><title>Stochastic identification of imperfections in a submerged shell structure</title><title>Computer methods in applied mechanics and engineering</title><description>•Geometric imperfection parameters are estimated in a fluid–structure interaction system.•Inverse problem solved using Markov chain Monte Carlo sampling.•Non-contact approach to damage identification is explored.•Uncertainty surrounding the parameters is quantified. Accurate predictions of the buckling load in imperfection sensitive shell structures requires precise knowledge of the location and magnitude of any geometric imperfections in the shell (e.g. dents). This work describes a non-contact approach to identifying such imperfections in a submerged shell structure. By monitoring the acoustic pressure field at discrete points proximal to a shell structure excited by a cyclic membrane (i.e. in-plane) loading, it is noticed that parameters, describing small scale denting, can be identified. In order to perform the identification, a fluid-structure model that predicts the spatio-temporal pressure field is required. This model is described in detail and includes the predicted effects of the imperfection on the observations. A Bayesian, Markov chain Monte Carlo approach is then used to generate the imperfection parameter estimates and quantify the uncertainty in those estimates. Additionally: for cases involving the occurrence of an unknown number of dents, reversible jump Markov chain Monte Carlo (RJMCMC) methods are employed in this work.</description><subject>Bayesian estimation</subject><subject>Computer simulation</subject><subject>Damage identification</subject><subject>Defects</subject><subject>Estimates</subject><subject>Fluid structure interaction</subject><subject>Markov chain Monte Carlo</subject><subject>Markov chains</subject><subject>Mathematical models</subject><subject>Monte Carlo methods</subject><subject>Reversible jump Markov chain Monte Carlo</subject><subject>Shell structure</subject><subject>Shells</subject><subject>Submerged</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LxDAQxYMouK5-AG89emnNNE2a4EkW_ywseFDPIU2mbpZtuyat4Lc3ZT3rXIaB9x5vfoRcAy2AgrjdFbYzRUmhKigUlLITsgBZq7wEJk_JgtKK57Us-Tm5iHFH00goF2T9Og52a-LobeYd9qNvvTWjH_psaDPfHTC0aOc7Zr7PTBanpsPwgS6LW9zvsziGyY5TwEty1pp9xKvfvSTvjw9vq-d88_K0Xt1vcssEG3PBpbEtmKppSkBumRWsrY10onXoVKNQCSdlpUAxJcrKomsalBQryi2vGVuSm2PuIQyfE8ZRdz7aVMX0OExRg6hrxUsm4H8p50CVlGpOhaPUhiHGgK0-BN-Z8K2B6pmw3ulEWM-ENQWdCCfP3dGD6d0vj0FH67FPjX1IzLQb_B_uH3aGhD4</recordid><startdate>20140415</startdate><enddate>20140415</enddate><creator>Reed, H.M.</creator><creator>Earls, C.J.</creator><creator>Nichols, J.M.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140415</creationdate><title>Stochastic identification of imperfections in a submerged shell structure</title><author>Reed, H.M. ; Earls, C.J. ; Nichols, J.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-658acf1a4bb21e5c3c63f7a8d6fded9b9e96d88491939624cedbbe80e405c5733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Bayesian estimation</topic><topic>Computer simulation</topic><topic>Damage identification</topic><topic>Defects</topic><topic>Estimates</topic><topic>Fluid structure interaction</topic><topic>Markov chain Monte Carlo</topic><topic>Markov chains</topic><topic>Mathematical models</topic><topic>Monte Carlo methods</topic><topic>Reversible jump Markov chain Monte Carlo</topic><topic>Shell structure</topic><topic>Shells</topic><topic>Submerged</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reed, H.M.</creatorcontrib><creatorcontrib>Earls, C.J.</creatorcontrib><creatorcontrib>Nichols, J.M.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reed, H.M.</au><au>Earls, C.J.</au><au>Nichols, J.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stochastic identification of imperfections in a submerged shell structure</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2014-04-15</date><risdate>2014</risdate><volume>272</volume><spage>58</spage><epage>82</epage><pages>58-82</pages><issn>0045-7825</issn><eissn>1879-2138</eissn><abstract>•Geometric imperfection parameters are estimated in a fluid–structure interaction system.•Inverse problem solved using Markov chain Monte Carlo sampling.•Non-contact approach to damage identification is explored.•Uncertainty surrounding the parameters is quantified. Accurate predictions of the buckling load in imperfection sensitive shell structures requires precise knowledge of the location and magnitude of any geometric imperfections in the shell (e.g. dents). This work describes a non-contact approach to identifying such imperfections in a submerged shell structure. By monitoring the acoustic pressure field at discrete points proximal to a shell structure excited by a cyclic membrane (i.e. in-plane) loading, it is noticed that parameters, describing small scale denting, can be identified. In order to perform the identification, a fluid-structure model that predicts the spatio-temporal pressure field is required. This model is described in detail and includes the predicted effects of the imperfection on the observations. A Bayesian, Markov chain Monte Carlo approach is then used to generate the imperfection parameter estimates and quantify the uncertainty in those estimates. Additionally: for cases involving the occurrence of an unknown number of dents, reversible jump Markov chain Monte Carlo (RJMCMC) methods are employed in this work.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cma.2014.01.003</doi><tpages>25</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0045-7825
ispartof Computer methods in applied mechanics and engineering, 2014-04, Vol.272, p.58-82
issn 0045-7825
1879-2138
language eng
recordid cdi_proquest_miscellaneous_1677952361
source ScienceDirect Journals (5 years ago - present)
subjects Bayesian estimation
Computer simulation
Damage identification
Defects
Estimates
Fluid structure interaction
Markov chain Monte Carlo
Markov chains
Mathematical models
Monte Carlo methods
Reversible jump Markov chain Monte Carlo
Shell structure
Shells
Submerged
title Stochastic identification of imperfections in a submerged shell structure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T03%3A34%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stochastic%20identification%20of%20imperfections%20in%20a%20submerged%20shell%20structure&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Reed,%20H.M.&rft.date=2014-04-15&rft.volume=272&rft.spage=58&rft.epage=82&rft.pages=58-82&rft.issn=0045-7825&rft.eissn=1879-2138&rft_id=info:doi/10.1016/j.cma.2014.01.003&rft_dat=%3Cproquest_cross%3E1551098893%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1551098893&rft_id=info:pmid/&rft_els_id=S0045782514000085&rfr_iscdi=true