Tailoring of antibacterial Ag nanostructures on TiO sub(2) nanotube layers by magnetron sputtering

To reduce the incidence of postsurgical bacterial infection that may cause implantation failure at the implant-bone interface, surface treatment of titanium implants with antibiotic materials such as silver (Ag) has been proposed. The purpose of this work was to create TiO sub(2) nanotubes using pla...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomedical materials research. Part B, Applied biomaterials Applied biomaterials, 2014-04, Vol.102 (3), p.592-603
Hauptverfasser: Uhm, Soo-Hyuk, Song, Doo-Hoon, Kwon, Jae-Sung, Lee, Sang-Bae, Han, Jeon-Geon, Kim, Kyoung-Nam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 603
container_issue 3
container_start_page 592
container_title Journal of biomedical materials research. Part B, Applied biomaterials
container_volume 102
creator Uhm, Soo-Hyuk
Song, Doo-Hoon
Kwon, Jae-Sung
Lee, Sang-Bae
Han, Jeon-Geon
Kim, Kyoung-Nam
description To reduce the incidence of postsurgical bacterial infection that may cause implantation failure at the implant-bone interface, surface treatment of titanium implants with antibiotic materials such as silver (Ag) has been proposed. The purpose of this work was to create TiO sub(2) nanotubes using plasma electrolytic oxidation (PEO), followed by formation of an antibacterial Ag nanostructure coating on the TiO sub(2) nanotube layer using a magnetron sputtering system. PEO was performed on commercially pure Ti sheets. The Ag nanostructure was added onto the resulting TiO sub(2) nanotube using magnetron sputtering at varying deposition rates. Field emission scanning electron microscopy and transmission electron microscopy were used to characterize the surface, and Ag content on the TiO sub(2) nanotube layer was analyzed by X-ray diffraction and X-ray photoelectron spectroscopy. Scanning probe microscopy for surface roughness and contact angle measurement were used to indirectly confirm enhanced TiO sub(2) nanotube hydrophilicity. Antibacterial activity of Ag ions in solution was determined by inductively coupled plasma mass spectrometry and antibacterial testing against Staphylococcus aureus (S. aureus). In vitro, TiO sub(2) nanotubes coated with sputtered Ag resulted in significantly reduced S. aureus. Cell viability assays showed no toxicity for the lowest sputtering time group in the osteoblastic cell line MC3T3-E1. These results suggest that a multinanostructured layer with a biocompatible TiO sub(2) nanotube and antimicrobial Ag coating is a promising biomaterial that can be tailored with magnetron sputtering for optimal performance. copyright 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 102B: 592-603, 2014.
doi_str_mv 10.1002/jbm.b.33038
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677952107</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1664192218</sourcerecordid><originalsourceid>FETCH-LOGICAL-p667-a1b81e4aa431f5f26407a197adefaa637082038a583db2ab58ca3b0b2eb29a753</originalsourceid><addsrcrecordid>eNqNj0tLw0AUhQdRsFZX_oFZ1kXqPDKPLEvRKhS6yb7cm05CSjqp81j03xsfuHZ1DpyPDw4hj5wtOWPi-YinJS6lZNJekRlXShRlZfn1XzfyltzFeJxgzZScEayhH8bQ-46OLQWfeoQmudDDQFcd9eDHmEJuUg4u0tHTut_RmHEhnr7HlNHRAS4uRIoXeoLOuxQmLp5z-vL47p7ctDBE9_Cbc1K_vtTrt2K727yvV9virLUpgKPlrgQoJW9VK3TJDPDKwMG1AFoaZsV0C5SVBxSAyjYgkaFwKCowSs7J4kd7DuNHdjHtT31s3DCAd2OOe66NqZTgzPwD1SWvhOBWfgK9YGce</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1664192218</pqid></control><display><type>article</type><title>Tailoring of antibacterial Ag nanostructures on TiO sub(2) nanotube layers by magnetron sputtering</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Uhm, Soo-Hyuk ; Song, Doo-Hoon ; Kwon, Jae-Sung ; Lee, Sang-Bae ; Han, Jeon-Geon ; Kim, Kyoung-Nam</creator><creatorcontrib>Uhm, Soo-Hyuk ; Song, Doo-Hoon ; Kwon, Jae-Sung ; Lee, Sang-Bae ; Han, Jeon-Geon ; Kim, Kyoung-Nam</creatorcontrib><description>To reduce the incidence of postsurgical bacterial infection that may cause implantation failure at the implant-bone interface, surface treatment of titanium implants with antibiotic materials such as silver (Ag) has been proposed. The purpose of this work was to create TiO sub(2) nanotubes using plasma electrolytic oxidation (PEO), followed by formation of an antibacterial Ag nanostructure coating on the TiO sub(2) nanotube layer using a magnetron sputtering system. PEO was performed on commercially pure Ti sheets. The Ag nanostructure was added onto the resulting TiO sub(2) nanotube using magnetron sputtering at varying deposition rates. Field emission scanning electron microscopy and transmission electron microscopy were used to characterize the surface, and Ag content on the TiO sub(2) nanotube layer was analyzed by X-ray diffraction and X-ray photoelectron spectroscopy. Scanning probe microscopy for surface roughness and contact angle measurement were used to indirectly confirm enhanced TiO sub(2) nanotube hydrophilicity. Antibacterial activity of Ag ions in solution was determined by inductively coupled plasma mass spectrometry and antibacterial testing against Staphylococcus aureus (S. aureus). In vitro, TiO sub(2) nanotubes coated with sputtered Ag resulted in significantly reduced S. aureus. Cell viability assays showed no toxicity for the lowest sputtering time group in the osteoblastic cell line MC3T3-E1. These results suggest that a multinanostructured layer with a biocompatible TiO sub(2) nanotube and antimicrobial Ag coating is a promising biomaterial that can be tailored with magnetron sputtering for optimal performance. copyright 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 102B: 592-603, 2014.</description><identifier>ISSN: 1552-4973</identifier><identifier>EISSN: 1552-4981</identifier><identifier>DOI: 10.1002/jbm.b.33038</identifier><language>eng</language><subject>Antiinfectives and antibacterials ; Bacteria ; Biocompatibility ; Biomedical materials ; Magnetron sputtering ; Nanostructure ; Silver ; Staphylococcus aureus ; Surgical implants ; Titanium dioxide</subject><ispartof>Journal of biomedical materials research. Part B, Applied biomaterials, 2014-04, Vol.102 (3), p.592-603</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Uhm, Soo-Hyuk</creatorcontrib><creatorcontrib>Song, Doo-Hoon</creatorcontrib><creatorcontrib>Kwon, Jae-Sung</creatorcontrib><creatorcontrib>Lee, Sang-Bae</creatorcontrib><creatorcontrib>Han, Jeon-Geon</creatorcontrib><creatorcontrib>Kim, Kyoung-Nam</creatorcontrib><title>Tailoring of antibacterial Ag nanostructures on TiO sub(2) nanotube layers by magnetron sputtering</title><title>Journal of biomedical materials research. Part B, Applied biomaterials</title><description>To reduce the incidence of postsurgical bacterial infection that may cause implantation failure at the implant-bone interface, surface treatment of titanium implants with antibiotic materials such as silver (Ag) has been proposed. The purpose of this work was to create TiO sub(2) nanotubes using plasma electrolytic oxidation (PEO), followed by formation of an antibacterial Ag nanostructure coating on the TiO sub(2) nanotube layer using a magnetron sputtering system. PEO was performed on commercially pure Ti sheets. The Ag nanostructure was added onto the resulting TiO sub(2) nanotube using magnetron sputtering at varying deposition rates. Field emission scanning electron microscopy and transmission electron microscopy were used to characterize the surface, and Ag content on the TiO sub(2) nanotube layer was analyzed by X-ray diffraction and X-ray photoelectron spectroscopy. Scanning probe microscopy for surface roughness and contact angle measurement were used to indirectly confirm enhanced TiO sub(2) nanotube hydrophilicity. Antibacterial activity of Ag ions in solution was determined by inductively coupled plasma mass spectrometry and antibacterial testing against Staphylococcus aureus (S. aureus). In vitro, TiO sub(2) nanotubes coated with sputtered Ag resulted in significantly reduced S. aureus. Cell viability assays showed no toxicity for the lowest sputtering time group in the osteoblastic cell line MC3T3-E1. These results suggest that a multinanostructured layer with a biocompatible TiO sub(2) nanotube and antimicrobial Ag coating is a promising biomaterial that can be tailored with magnetron sputtering for optimal performance. copyright 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 102B: 592-603, 2014.</description><subject>Antiinfectives and antibacterials</subject><subject>Bacteria</subject><subject>Biocompatibility</subject><subject>Biomedical materials</subject><subject>Magnetron sputtering</subject><subject>Nanostructure</subject><subject>Silver</subject><subject>Staphylococcus aureus</subject><subject>Surgical implants</subject><subject>Titanium dioxide</subject><issn>1552-4973</issn><issn>1552-4981</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNj0tLw0AUhQdRsFZX_oFZ1kXqPDKPLEvRKhS6yb7cm05CSjqp81j03xsfuHZ1DpyPDw4hj5wtOWPi-YinJS6lZNJekRlXShRlZfn1XzfyltzFeJxgzZScEayhH8bQ-46OLQWfeoQmudDDQFcd9eDHmEJuUg4u0tHTut_RmHEhnr7HlNHRAS4uRIoXeoLOuxQmLp5z-vL47p7ctDBE9_Cbc1K_vtTrt2K727yvV9virLUpgKPlrgQoJW9VK3TJDPDKwMG1AFoaZsV0C5SVBxSAyjYgkaFwKCowSs7J4kd7DuNHdjHtT31s3DCAd2OOe66NqZTgzPwD1SWvhOBWfgK9YGce</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Uhm, Soo-Hyuk</creator><creator>Song, Doo-Hoon</creator><creator>Kwon, Jae-Sung</creator><creator>Lee, Sang-Bae</creator><creator>Han, Jeon-Geon</creator><creator>Kim, Kyoung-Nam</creator><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>F28</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20140401</creationdate><title>Tailoring of antibacterial Ag nanostructures on TiO sub(2) nanotube layers by magnetron sputtering</title><author>Uhm, Soo-Hyuk ; Song, Doo-Hoon ; Kwon, Jae-Sung ; Lee, Sang-Bae ; Han, Jeon-Geon ; Kim, Kyoung-Nam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p667-a1b81e4aa431f5f26407a197adefaa637082038a583db2ab58ca3b0b2eb29a753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Antiinfectives and antibacterials</topic><topic>Bacteria</topic><topic>Biocompatibility</topic><topic>Biomedical materials</topic><topic>Magnetron sputtering</topic><topic>Nanostructure</topic><topic>Silver</topic><topic>Staphylococcus aureus</topic><topic>Surgical implants</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Uhm, Soo-Hyuk</creatorcontrib><creatorcontrib>Song, Doo-Hoon</creatorcontrib><creatorcontrib>Kwon, Jae-Sung</creatorcontrib><creatorcontrib>Lee, Sang-Bae</creatorcontrib><creatorcontrib>Han, Jeon-Geon</creatorcontrib><creatorcontrib>Kim, Kyoung-Nam</creatorcontrib><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of biomedical materials research. Part B, Applied biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Uhm, Soo-Hyuk</au><au>Song, Doo-Hoon</au><au>Kwon, Jae-Sung</au><au>Lee, Sang-Bae</au><au>Han, Jeon-Geon</au><au>Kim, Kyoung-Nam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tailoring of antibacterial Ag nanostructures on TiO sub(2) nanotube layers by magnetron sputtering</atitle><jtitle>Journal of biomedical materials research. Part B, Applied biomaterials</jtitle><date>2014-04-01</date><risdate>2014</risdate><volume>102</volume><issue>3</issue><spage>592</spage><epage>603</epage><pages>592-603</pages><issn>1552-4973</issn><eissn>1552-4981</eissn><abstract>To reduce the incidence of postsurgical bacterial infection that may cause implantation failure at the implant-bone interface, surface treatment of titanium implants with antibiotic materials such as silver (Ag) has been proposed. The purpose of this work was to create TiO sub(2) nanotubes using plasma electrolytic oxidation (PEO), followed by formation of an antibacterial Ag nanostructure coating on the TiO sub(2) nanotube layer using a magnetron sputtering system. PEO was performed on commercially pure Ti sheets. The Ag nanostructure was added onto the resulting TiO sub(2) nanotube using magnetron sputtering at varying deposition rates. Field emission scanning electron microscopy and transmission electron microscopy were used to characterize the surface, and Ag content on the TiO sub(2) nanotube layer was analyzed by X-ray diffraction and X-ray photoelectron spectroscopy. Scanning probe microscopy for surface roughness and contact angle measurement were used to indirectly confirm enhanced TiO sub(2) nanotube hydrophilicity. Antibacterial activity of Ag ions in solution was determined by inductively coupled plasma mass spectrometry and antibacterial testing against Staphylococcus aureus (S. aureus). In vitro, TiO sub(2) nanotubes coated with sputtered Ag resulted in significantly reduced S. aureus. Cell viability assays showed no toxicity for the lowest sputtering time group in the osteoblastic cell line MC3T3-E1. These results suggest that a multinanostructured layer with a biocompatible TiO sub(2) nanotube and antimicrobial Ag coating is a promising biomaterial that can be tailored with magnetron sputtering for optimal performance. copyright 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 102B: 592-603, 2014.</abstract><doi>10.1002/jbm.b.33038</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1552-4973
ispartof Journal of biomedical materials research. Part B, Applied biomaterials, 2014-04, Vol.102 (3), p.592-603
issn 1552-4973
1552-4981
language eng
recordid cdi_proquest_miscellaneous_1677952107
source Wiley Online Library - AutoHoldings Journals
subjects Antiinfectives and antibacterials
Bacteria
Biocompatibility
Biomedical materials
Magnetron sputtering
Nanostructure
Silver
Staphylococcus aureus
Surgical implants
Titanium dioxide
title Tailoring of antibacterial Ag nanostructures on TiO sub(2) nanotube layers by magnetron sputtering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T11%3A12%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tailoring%20of%20antibacterial%20Ag%20nanostructures%20on%20TiO%20sub(2)%20nanotube%20layers%20by%20magnetron%20sputtering&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20B,%20Applied%20biomaterials&rft.au=Uhm,%20Soo-Hyuk&rft.date=2014-04-01&rft.volume=102&rft.issue=3&rft.spage=592&rft.epage=603&rft.pages=592-603&rft.issn=1552-4973&rft.eissn=1552-4981&rft_id=info:doi/10.1002/jbm.b.33038&rft_dat=%3Cproquest%3E1664192218%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1664192218&rft_id=info:pmid/&rfr_iscdi=true