Folding transformations of equations from the Gambier family

•Using a generalized folding transformation we establish a connection between the generalized second-order Abel and Gambier equations.•As an application (dynamical) of folding transformation we find that the Darboux polynomials are invariant.•In consequence of this invariance the first integrals are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in nonlinear science & numerical simulation 2015-05, Vol.22 (1-3), p.1028-1035
Hauptverfasser: Guha, Partha, Ghose Choudhury, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1035
container_issue 1-3
container_start_page 1028
container_title Communications in nonlinear science & numerical simulation
container_volume 22
creator Guha, Partha
Ghose Choudhury, A.
description •Using a generalized folding transformation we establish a connection between the generalized second-order Abel and Gambier equations.•As an application (dynamical) of folding transformation we find that the Darboux polynomials are invariant.•In consequence of this invariance the first integrals are also invariant. Using Okamoto’s folding transformation we investigate the mapping of the Gambier equation and its higher-order analogs to the generalized Abel chain of equations. In particular we show how the Darboux polynomials and first integral of the Abel equation can be mapped to an equation of the Gambier type using folding transformations.
doi_str_mv 10.1016/j.cnsns.2014.09.021
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677949867</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1007570414004651</els_id><sourcerecordid>1677949867</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-1d3a00518465486f75feb8350f842192f1d15ecd470e46486979b5eb4c3e9fac3</originalsourceid><addsrcrecordid>eNp9kLFOwzAQhi0EEqXwBCwZWRLOiR3HEgyoogWpEgvMluOcwVUSt3aK1LfH0M5Mdyf930n_R8gthYICre83hRnjGIsSKCtAFlDSMzKjjWhyUQp2nnYAkXMB7JJcxbiBREnOZuRh6fvOjZ_ZFPQYrQ-DnpwfY-Zthrv96bDBD9n0hdlKD63DkFk9uP5wTS6s7iPenOacfCyf3xcv-fpt9bp4Wuemquopp12lAThtWM1ZU1vBLbZNxcE2rKSytLSjHE3HBCCrU0IK2XJsmalQWm2qObk7_t0Gv9tjnNTgosG-1yP6fVS0FkIy2dQiRatj1AQfY0CrtsENOhwUBfXrSm3Unyv160qBVMlVoh6PFKYW36mgisbhaLBzAc2kOu_-5X8AW4hzGw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1677949867</pqid></control><display><type>article</type><title>Folding transformations of equations from the Gambier family</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Guha, Partha ; Ghose Choudhury, A.</creator><creatorcontrib>Guha, Partha ; Ghose Choudhury, A.</creatorcontrib><description>•Using a generalized folding transformation we establish a connection between the generalized second-order Abel and Gambier equations.•As an application (dynamical) of folding transformation we find that the Darboux polynomials are invariant.•In consequence of this invariance the first integrals are also invariant. Using Okamoto’s folding transformation we investigate the mapping of the Gambier equation and its higher-order analogs to the generalized Abel chain of equations. In particular we show how the Darboux polynomials and first integral of the Abel equation can be mapped to an equation of the Gambier type using folding transformations.</description><identifier>ISSN: 1007-5704</identifier><identifier>EISSN: 1878-7274</identifier><identifier>DOI: 10.1016/j.cnsns.2014.09.021</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Abel sequence of differential equations ; Chains ; Computer simulation ; Folding ; Folding transformation ; Gambier equation ; Integrals ; Mathematical analysis ; Nonlinearity ; Polynomials ; Transformations ; Transformations (mathematics)</subject><ispartof>Communications in nonlinear science &amp; numerical simulation, 2015-05, Vol.22 (1-3), p.1028-1035</ispartof><rights>2014 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-1d3a00518465486f75feb8350f842192f1d15ecd470e46486979b5eb4c3e9fac3</citedby><cites>FETCH-LOGICAL-c336t-1d3a00518465486f75feb8350f842192f1d15ecd470e46486979b5eb4c3e9fac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1007570414004651$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Guha, Partha</creatorcontrib><creatorcontrib>Ghose Choudhury, A.</creatorcontrib><title>Folding transformations of equations from the Gambier family</title><title>Communications in nonlinear science &amp; numerical simulation</title><description>•Using a generalized folding transformation we establish a connection between the generalized second-order Abel and Gambier equations.•As an application (dynamical) of folding transformation we find that the Darboux polynomials are invariant.•In consequence of this invariance the first integrals are also invariant. Using Okamoto’s folding transformation we investigate the mapping of the Gambier equation and its higher-order analogs to the generalized Abel chain of equations. In particular we show how the Darboux polynomials and first integral of the Abel equation can be mapped to an equation of the Gambier type using folding transformations.</description><subject>Abel sequence of differential equations</subject><subject>Chains</subject><subject>Computer simulation</subject><subject>Folding</subject><subject>Folding transformation</subject><subject>Gambier equation</subject><subject>Integrals</subject><subject>Mathematical analysis</subject><subject>Nonlinearity</subject><subject>Polynomials</subject><subject>Transformations</subject><subject>Transformations (mathematics)</subject><issn>1007-5704</issn><issn>1878-7274</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kLFOwzAQhi0EEqXwBCwZWRLOiR3HEgyoogWpEgvMluOcwVUSt3aK1LfH0M5Mdyf930n_R8gthYICre83hRnjGIsSKCtAFlDSMzKjjWhyUQp2nnYAkXMB7JJcxbiBREnOZuRh6fvOjZ_ZFPQYrQ-DnpwfY-Zthrv96bDBD9n0hdlKD63DkFk9uP5wTS6s7iPenOacfCyf3xcv-fpt9bp4Wuemquopp12lAThtWM1ZU1vBLbZNxcE2rKSytLSjHE3HBCCrU0IK2XJsmalQWm2qObk7_t0Gv9tjnNTgosG-1yP6fVS0FkIy2dQiRatj1AQfY0CrtsENOhwUBfXrSm3Unyv160qBVMlVoh6PFKYW36mgisbhaLBzAc2kOu_-5X8AW4hzGw</recordid><startdate>201505</startdate><enddate>201505</enddate><creator>Guha, Partha</creator><creator>Ghose Choudhury, A.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201505</creationdate><title>Folding transformations of equations from the Gambier family</title><author>Guha, Partha ; Ghose Choudhury, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-1d3a00518465486f75feb8350f842192f1d15ecd470e46486979b5eb4c3e9fac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Abel sequence of differential equations</topic><topic>Chains</topic><topic>Computer simulation</topic><topic>Folding</topic><topic>Folding transformation</topic><topic>Gambier equation</topic><topic>Integrals</topic><topic>Mathematical analysis</topic><topic>Nonlinearity</topic><topic>Polynomials</topic><topic>Transformations</topic><topic>Transformations (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guha, Partha</creatorcontrib><creatorcontrib>Ghose Choudhury, A.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Communications in nonlinear science &amp; numerical simulation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guha, Partha</au><au>Ghose Choudhury, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Folding transformations of equations from the Gambier family</atitle><jtitle>Communications in nonlinear science &amp; numerical simulation</jtitle><date>2015-05</date><risdate>2015</risdate><volume>22</volume><issue>1-3</issue><spage>1028</spage><epage>1035</epage><pages>1028-1035</pages><issn>1007-5704</issn><eissn>1878-7274</eissn><abstract>•Using a generalized folding transformation we establish a connection between the generalized second-order Abel and Gambier equations.•As an application (dynamical) of folding transformation we find that the Darboux polynomials are invariant.•In consequence of this invariance the first integrals are also invariant. Using Okamoto’s folding transformation we investigate the mapping of the Gambier equation and its higher-order analogs to the generalized Abel chain of equations. In particular we show how the Darboux polynomials and first integral of the Abel equation can be mapped to an equation of the Gambier type using folding transformations.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cnsns.2014.09.021</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1007-5704
ispartof Communications in nonlinear science & numerical simulation, 2015-05, Vol.22 (1-3), p.1028-1035
issn 1007-5704
1878-7274
language eng
recordid cdi_proquest_miscellaneous_1677949867
source Elsevier ScienceDirect Journals Complete
subjects Abel sequence of differential equations
Chains
Computer simulation
Folding
Folding transformation
Gambier equation
Integrals
Mathematical analysis
Nonlinearity
Polynomials
Transformations
Transformations (mathematics)
title Folding transformations of equations from the Gambier family
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T18%3A10%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Folding%20transformations%20of%20equations%20from%20the%20Gambier%20family&rft.jtitle=Communications%20in%20nonlinear%20science%20&%20numerical%20simulation&rft.au=Guha,%20Partha&rft.date=2015-05&rft.volume=22&rft.issue=1-3&rft.spage=1028&rft.epage=1035&rft.pages=1028-1035&rft.issn=1007-5704&rft.eissn=1878-7274&rft_id=info:doi/10.1016/j.cnsns.2014.09.021&rft_dat=%3Cproquest_cross%3E1677949867%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1677949867&rft_id=info:pmid/&rft_els_id=S1007570414004651&rfr_iscdi=true