Approximate reconstruction from ray integrals of a function on a domain with low refraction
An approach is proposed for reconstruction from ray integrals of a function defined on a Riemannian domain with low refraction. Using the back-projection operator and the fast Fourier transform, an inversion algorithm is constructed for the ray transform and its numerical study is carried out.
Gespeichert in:
Veröffentlicht in: | Journal of applied and industrial mathematics 2015, Vol.9 (1), p.36-46 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 46 |
---|---|
container_issue | 1 |
container_start_page | 36 |
container_title | Journal of applied and industrial mathematics |
container_volume | 9 |
creator | Derevtsov, E. Yu Maltseva, S.V. Svetov, I. E. |
description | An approach is proposed for reconstruction from ray integrals of a function defined on a Riemannian domain with low refraction. Using the back-projection operator and the fast Fourier transform, an inversion algorithm is constructed for the ray transform and its numerical study is carried out. |
doi_str_mv | 10.1134/S1990478915010056 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677948341</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3608129501</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2646-f134d102e49bf9bed4355be6d8230b70e64117c1221bc82630dc3e93b6e4bb03</originalsourceid><addsrcrecordid>eNp1kF9LwzAUxYMoOOY-gG8BX3yZ5iZp0jyO4T8Y-ODefChNms5Km8ykZe7bm1kRUYRAws3vHO45CJ0DuQJg_PoJlCJc5goyAoRk4ghNDqM5l0oef79zdYpmMTaaMKCCCUEn6Hmx3Qb_3nRlb3GwxrvYh8H0jXe4Dr7DodzjxvV2E8o2Yl_jEteDG4F0Slz5rmwc3jX9C279LpnUofz8P0MndRLZ2dc9Revbm_Xyfr56vHtYLlZzQwUX8zpFqIBQy5WulbYVZ1mmrahyyoiWxAoOIA1QCtrkaXFSGWYV08JynbJM0eVom4K8DTb2RddEY9u2dNYPsQAhpeI545DQi1_oqx-CS8slKstzDkTyRMFImeBjTHmKbUgFhX0BpDgUXvwpPGnoqImJdRsbfjj_K_oALjOBqA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1658841074</pqid></control><display><type>article</type><title>Approximate reconstruction from ray integrals of a function on a domain with low refraction</title><source>Springer Journals</source><creator>Derevtsov, E. Yu ; Maltseva, S.V. ; Svetov, I. E.</creator><creatorcontrib>Derevtsov, E. Yu ; Maltseva, S.V. ; Svetov, I. E.</creatorcontrib><description>An approach is proposed for reconstruction from ray integrals of a function defined on a Riemannian domain with low refraction. Using the back-projection operator and the fast Fourier transform, an inversion algorithm is constructed for the ray transform and its numerical study is carried out.</description><identifier>ISSN: 1990-4789</identifier><identifier>EISSN: 1990-4797</identifier><identifier>DOI: 10.1134/S1990478915010056</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algorithms ; Approximation ; Construction industry ; Electromagnetism ; Fourier transforms ; Integrals ; Mathematical analysis ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Reconstruction ; Refraction ; Studies ; Tomography ; Transforms</subject><ispartof>Journal of applied and industrial mathematics, 2015, Vol.9 (1), p.36-46</ispartof><rights>Pleiades Publishing, Ltd. 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2646-f134d102e49bf9bed4355be6d8230b70e64117c1221bc82630dc3e93b6e4bb03</citedby><cites>FETCH-LOGICAL-c2646-f134d102e49bf9bed4355be6d8230b70e64117c1221bc82630dc3e93b6e4bb03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1990478915010056$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1990478915010056$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Derevtsov, E. Yu</creatorcontrib><creatorcontrib>Maltseva, S.V.</creatorcontrib><creatorcontrib>Svetov, I. E.</creatorcontrib><title>Approximate reconstruction from ray integrals of a function on a domain with low refraction</title><title>Journal of applied and industrial mathematics</title><addtitle>J. Appl. Ind. Math</addtitle><description>An approach is proposed for reconstruction from ray integrals of a function defined on a Riemannian domain with low refraction. Using the back-projection operator and the fast Fourier transform, an inversion algorithm is constructed for the ray transform and its numerical study is carried out.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Construction industry</subject><subject>Electromagnetism</subject><subject>Fourier transforms</subject><subject>Integrals</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Reconstruction</subject><subject>Refraction</subject><subject>Studies</subject><subject>Tomography</subject><subject>Transforms</subject><issn>1990-4789</issn><issn>1990-4797</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kF9LwzAUxYMoOOY-gG8BX3yZ5iZp0jyO4T8Y-ODefChNms5Km8ykZe7bm1kRUYRAws3vHO45CJ0DuQJg_PoJlCJc5goyAoRk4ghNDqM5l0oef79zdYpmMTaaMKCCCUEn6Hmx3Qb_3nRlb3GwxrvYh8H0jXe4Dr7DodzjxvV2E8o2Yl_jEteDG4F0Slz5rmwc3jX9C279LpnUofz8P0MndRLZ2dc9Revbm_Xyfr56vHtYLlZzQwUX8zpFqIBQy5WulbYVZ1mmrahyyoiWxAoOIA1QCtrkaXFSGWYV08JynbJM0eVom4K8DTb2RddEY9u2dNYPsQAhpeI545DQi1_oqx-CS8slKstzDkTyRMFImeBjTHmKbUgFhX0BpDgUXvwpPGnoqImJdRsbfjj_K_oALjOBqA</recordid><startdate>2015</startdate><enddate>2015</enddate><creator>Derevtsov, E. Yu</creator><creator>Maltseva, S.V.</creator><creator>Svetov, I. E.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>2015</creationdate><title>Approximate reconstruction from ray integrals of a function on a domain with low refraction</title><author>Derevtsov, E. Yu ; Maltseva, S.V. ; Svetov, I. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2646-f134d102e49bf9bed4355be6d8230b70e64117c1221bc82630dc3e93b6e4bb03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Construction industry</topic><topic>Electromagnetism</topic><topic>Fourier transforms</topic><topic>Integrals</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Reconstruction</topic><topic>Refraction</topic><topic>Studies</topic><topic>Tomography</topic><topic>Transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Derevtsov, E. Yu</creatorcontrib><creatorcontrib>Maltseva, S.V.</creatorcontrib><creatorcontrib>Svetov, I. E.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of applied and industrial mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Derevtsov, E. Yu</au><au>Maltseva, S.V.</au><au>Svetov, I. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approximate reconstruction from ray integrals of a function on a domain with low refraction</atitle><jtitle>Journal of applied and industrial mathematics</jtitle><stitle>J. Appl. Ind. Math</stitle><date>2015</date><risdate>2015</risdate><volume>9</volume><issue>1</issue><spage>36</spage><epage>46</epage><pages>36-46</pages><issn>1990-4789</issn><eissn>1990-4797</eissn><abstract>An approach is proposed for reconstruction from ray integrals of a function defined on a Riemannian domain with low refraction. Using the back-projection operator and the fast Fourier transform, an inversion algorithm is constructed for the ray transform and its numerical study is carried out.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1990478915010056</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1990-4789 |
ispartof | Journal of applied and industrial mathematics, 2015, Vol.9 (1), p.36-46 |
issn | 1990-4789 1990-4797 |
language | eng |
recordid | cdi_proquest_miscellaneous_1677948341 |
source | Springer Journals |
subjects | Algorithms Approximation Construction industry Electromagnetism Fourier transforms Integrals Mathematical analysis Mathematical models Mathematics Mathematics and Statistics Reconstruction Refraction Studies Tomography Transforms |
title | Approximate reconstruction from ray integrals of a function on a domain with low refraction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T18%3A58%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approximate%20reconstruction%20from%20ray%20integrals%20of%20a%20function%20on%20a%20domain%20with%20low%20refraction&rft.jtitle=Journal%20of%20applied%20and%20industrial%20mathematics&rft.au=Derevtsov,%20E.%20Yu&rft.date=2015&rft.volume=9&rft.issue=1&rft.spage=36&rft.epage=46&rft.pages=36-46&rft.issn=1990-4789&rft.eissn=1990-4797&rft_id=info:doi/10.1134/S1990478915010056&rft_dat=%3Cproquest_cross%3E3608129501%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1658841074&rft_id=info:pmid/&rfr_iscdi=true |