Approximate reconstruction from ray integrals of a function on a domain with low refraction

An approach is proposed for reconstruction from ray integrals of a function defined on a Riemannian domain with low refraction. Using the back-projection operator and the fast Fourier transform, an inversion algorithm is constructed for the ray transform and its numerical study is carried out.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied and industrial mathematics 2015, Vol.9 (1), p.36-46
Hauptverfasser: Derevtsov, E. Yu, Maltseva, S.V., Svetov, I. E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 46
container_issue 1
container_start_page 36
container_title Journal of applied and industrial mathematics
container_volume 9
creator Derevtsov, E. Yu
Maltseva, S.V.
Svetov, I. E.
description An approach is proposed for reconstruction from ray integrals of a function defined on a Riemannian domain with low refraction. Using the back-projection operator and the fast Fourier transform, an inversion algorithm is constructed for the ray transform and its numerical study is carried out.
doi_str_mv 10.1134/S1990478915010056
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677948341</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3608129501</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2646-f134d102e49bf9bed4355be6d8230b70e64117c1221bc82630dc3e93b6e4bb03</originalsourceid><addsrcrecordid>eNp1kF9LwzAUxYMoOOY-gG8BX3yZ5iZp0jyO4T8Y-ODefChNms5Km8ykZe7bm1kRUYRAws3vHO45CJ0DuQJg_PoJlCJc5goyAoRk4ghNDqM5l0oef79zdYpmMTaaMKCCCUEn6Hmx3Qb_3nRlb3GwxrvYh8H0jXe4Dr7DodzjxvV2E8o2Yl_jEteDG4F0Slz5rmwc3jX9C279LpnUofz8P0MndRLZ2dc9Revbm_Xyfr56vHtYLlZzQwUX8zpFqIBQy5WulbYVZ1mmrahyyoiWxAoOIA1QCtrkaXFSGWYV08JynbJM0eVom4K8DTb2RddEY9u2dNYPsQAhpeI545DQi1_oqx-CS8slKstzDkTyRMFImeBjTHmKbUgFhX0BpDgUXvwpPGnoqImJdRsbfjj_K_oALjOBqA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1658841074</pqid></control><display><type>article</type><title>Approximate reconstruction from ray integrals of a function on a domain with low refraction</title><source>Springer Journals</source><creator>Derevtsov, E. Yu ; Maltseva, S.V. ; Svetov, I. E.</creator><creatorcontrib>Derevtsov, E. Yu ; Maltseva, S.V. ; Svetov, I. E.</creatorcontrib><description>An approach is proposed for reconstruction from ray integrals of a function defined on a Riemannian domain with low refraction. Using the back-projection operator and the fast Fourier transform, an inversion algorithm is constructed for the ray transform and its numerical study is carried out.</description><identifier>ISSN: 1990-4789</identifier><identifier>EISSN: 1990-4797</identifier><identifier>DOI: 10.1134/S1990478915010056</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algorithms ; Approximation ; Construction industry ; Electromagnetism ; Fourier transforms ; Integrals ; Mathematical analysis ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Reconstruction ; Refraction ; Studies ; Tomography ; Transforms</subject><ispartof>Journal of applied and industrial mathematics, 2015, Vol.9 (1), p.36-46</ispartof><rights>Pleiades Publishing, Ltd. 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2646-f134d102e49bf9bed4355be6d8230b70e64117c1221bc82630dc3e93b6e4bb03</citedby><cites>FETCH-LOGICAL-c2646-f134d102e49bf9bed4355be6d8230b70e64117c1221bc82630dc3e93b6e4bb03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1990478915010056$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1990478915010056$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Derevtsov, E. Yu</creatorcontrib><creatorcontrib>Maltseva, S.V.</creatorcontrib><creatorcontrib>Svetov, I. E.</creatorcontrib><title>Approximate reconstruction from ray integrals of a function on a domain with low refraction</title><title>Journal of applied and industrial mathematics</title><addtitle>J. Appl. Ind. Math</addtitle><description>An approach is proposed for reconstruction from ray integrals of a function defined on a Riemannian domain with low refraction. Using the back-projection operator and the fast Fourier transform, an inversion algorithm is constructed for the ray transform and its numerical study is carried out.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Construction industry</subject><subject>Electromagnetism</subject><subject>Fourier transforms</subject><subject>Integrals</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Reconstruction</subject><subject>Refraction</subject><subject>Studies</subject><subject>Tomography</subject><subject>Transforms</subject><issn>1990-4789</issn><issn>1990-4797</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kF9LwzAUxYMoOOY-gG8BX3yZ5iZp0jyO4T8Y-ODefChNms5Km8ykZe7bm1kRUYRAws3vHO45CJ0DuQJg_PoJlCJc5goyAoRk4ghNDqM5l0oef79zdYpmMTaaMKCCCUEn6Hmx3Qb_3nRlb3GwxrvYh8H0jXe4Dr7DodzjxvV2E8o2Yl_jEteDG4F0Slz5rmwc3jX9C279LpnUofz8P0MndRLZ2dc9Revbm_Xyfr56vHtYLlZzQwUX8zpFqIBQy5WulbYVZ1mmrahyyoiWxAoOIA1QCtrkaXFSGWYV08JynbJM0eVom4K8DTb2RddEY9u2dNYPsQAhpeI545DQi1_oqx-CS8slKstzDkTyRMFImeBjTHmKbUgFhX0BpDgUXvwpPGnoqImJdRsbfjj_K_oALjOBqA</recordid><startdate>2015</startdate><enddate>2015</enddate><creator>Derevtsov, E. Yu</creator><creator>Maltseva, S.V.</creator><creator>Svetov, I. E.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>2015</creationdate><title>Approximate reconstruction from ray integrals of a function on a domain with low refraction</title><author>Derevtsov, E. Yu ; Maltseva, S.V. ; Svetov, I. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2646-f134d102e49bf9bed4355be6d8230b70e64117c1221bc82630dc3e93b6e4bb03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Construction industry</topic><topic>Electromagnetism</topic><topic>Fourier transforms</topic><topic>Integrals</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Reconstruction</topic><topic>Refraction</topic><topic>Studies</topic><topic>Tomography</topic><topic>Transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Derevtsov, E. Yu</creatorcontrib><creatorcontrib>Maltseva, S.V.</creatorcontrib><creatorcontrib>Svetov, I. E.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of applied and industrial mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Derevtsov, E. Yu</au><au>Maltseva, S.V.</au><au>Svetov, I. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approximate reconstruction from ray integrals of a function on a domain with low refraction</atitle><jtitle>Journal of applied and industrial mathematics</jtitle><stitle>J. Appl. Ind. Math</stitle><date>2015</date><risdate>2015</risdate><volume>9</volume><issue>1</issue><spage>36</spage><epage>46</epage><pages>36-46</pages><issn>1990-4789</issn><eissn>1990-4797</eissn><abstract>An approach is proposed for reconstruction from ray integrals of a function defined on a Riemannian domain with low refraction. Using the back-projection operator and the fast Fourier transform, an inversion algorithm is constructed for the ray transform and its numerical study is carried out.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1990478915010056</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1990-4789
ispartof Journal of applied and industrial mathematics, 2015, Vol.9 (1), p.36-46
issn 1990-4789
1990-4797
language eng
recordid cdi_proquest_miscellaneous_1677948341
source Springer Journals
subjects Algorithms
Approximation
Construction industry
Electromagnetism
Fourier transforms
Integrals
Mathematical analysis
Mathematical models
Mathematics
Mathematics and Statistics
Reconstruction
Refraction
Studies
Tomography
Transforms
title Approximate reconstruction from ray integrals of a function on a domain with low refraction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T18%3A58%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approximate%20reconstruction%20from%20ray%20integrals%20of%20a%20function%20on%20a%20domain%20with%20low%20refraction&rft.jtitle=Journal%20of%20applied%20and%20industrial%20mathematics&rft.au=Derevtsov,%20E.%20Yu&rft.date=2015&rft.volume=9&rft.issue=1&rft.spage=36&rft.epage=46&rft.pages=36-46&rft.issn=1990-4789&rft.eissn=1990-4797&rft_id=info:doi/10.1134/S1990478915010056&rft_dat=%3Cproquest_cross%3E3608129501%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1658841074&rft_id=info:pmid/&rfr_iscdi=true