On the dynamics of viscous masonry beams
In this paper, we consider the longitudinal and transversal vibrations of the masonry beams and arches. The basic motivation is the seismic vulnerability analysis of masonry structures that can be modeled as monodimensional elements. The Euler–Bernoulli hypothesis is employed for the system of force...
Gespeichert in:
Veröffentlicht in: | Continuum mechanics and thermodynamics 2015-05, Vol.27 (3), p.349-365 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 365 |
---|---|
container_issue | 3 |
container_start_page | 349 |
container_title | Continuum mechanics and thermodynamics |
container_volume | 27 |
creator | Lucchesi, M. Pintucchi, B. Šilhavý, M. Zani, N. |
description | In this paper, we consider the longitudinal and transversal vibrations of the masonry beams and arches. The basic motivation is the seismic vulnerability analysis of masonry structures that can be modeled as monodimensional elements. The Euler–Bernoulli hypothesis is employed for the system of forces in the beam. The axial force and the bending moment are assumed to consist of the elastic and viscous parts. The elastic part is described by the no-tension material, i.e., the material with no resistance to tension and which accounts for the cases of limitless, as well as bounded compressive strength. The adaptation of this material to beams has been developed in Orlandi (Analisi non lineare di strutture ad arco in muratura. Thesis,
1999
) and Zani (Eur J Mech A/Solids 23:467–484,
2004
). The viscous part amounts to the Kelvin–Voigt damping depending linearly on the time derivatives of the linearized strain and curvature. The dynamical equations are formulated, and a mathematical analysis of them is presented. Specifically, following Gajewski et al. (Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen. Akademie-Verlag, Berlin,
1974
), the theorems of existence, uniqueness and regularity of the solution of the dynamical equations are recapitulated and specialized for our purposes, to support the numerical analysis applied previously in Lucchesi and Pintucchi (Eur J Mech A/Solids 26:88–105,
2007
). As usual, for that the Galerkin method has been used. As an illustration, two numerical examples (slender masonry tower and masonry arch) are presented in this paper with the applied forces corresponding to the acceleration in the earthquake in Emilia Romagna in May 29, 2012. |
doi_str_mv | 10.1007/s00161-014-0352-y |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677946896</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A451633909</galeid><sourcerecordid>A451633909</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-4b76183eb694cc75779f828807dfcec898e36797be04cf8b705e76981fac58b43</originalsourceid><addsrcrecordid>eNp1kE1LAzEURYMoWKs_wN2Am26iyeR7WYpfUOhG1yGTJnXKTFKTqTD_3pRxIYK8ReBx7uPmAHCL0T1GSDxkhDDHEGEKEWE1HM_ADFNSQ6SYOgczpAiDGAt2Ca5y3qOSUYzMwGITquHDVdsxmL61uYq--mqzjcdc9SbHkMaqcabP1-DCmy67m593Dt6fHt9WL3C9eX5dLdfQUiYHSBvBsSSu4YpaK5gQystaSiS23jorlXSECyUah6j1shGIOcGVxN5YJhtK5mAx3T2k-Hl0edB9qeO6zgRXSmnMy0nKpeIFvfuD7uMxhdKuUJwWL3XNCnU_UTvTOd0GH4dkbJmtKx-Owfm27JeUYU6IKp7mAE8Bm2LOyXl9SG1v0qgx0ifZepKti2x9kq3HkqmnTC5s2Ln0q8q_oW-N5H9V</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1664100225</pqid></control><display><type>article</type><title>On the dynamics of viscous masonry beams</title><source>SpringerLink</source><creator>Lucchesi, M. ; Pintucchi, B. ; Šilhavý, M. ; Zani, N.</creator><creatorcontrib>Lucchesi, M. ; Pintucchi, B. ; Šilhavý, M. ; Zani, N.</creatorcontrib><description>In this paper, we consider the longitudinal and transversal vibrations of the masonry beams and arches. The basic motivation is the seismic vulnerability analysis of masonry structures that can be modeled as monodimensional elements. The Euler–Bernoulli hypothesis is employed for the system of forces in the beam. The axial force and the bending moment are assumed to consist of the elastic and viscous parts. The elastic part is described by the no-tension material, i.e., the material with no resistance to tension and which accounts for the cases of limitless, as well as bounded compressive strength. The adaptation of this material to beams has been developed in Orlandi (Analisi non lineare di strutture ad arco in muratura. Thesis,
1999
) and Zani (Eur J Mech A/Solids 23:467–484,
2004
). The viscous part amounts to the Kelvin–Voigt damping depending linearly on the time derivatives of the linearized strain and curvature. The dynamical equations are formulated, and a mathematical analysis of them is presented. Specifically, following Gajewski et al. (Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen. Akademie-Verlag, Berlin,
1974
), the theorems of existence, uniqueness and regularity of the solution of the dynamical equations are recapitulated and specialized for our purposes, to support the numerical analysis applied previously in Lucchesi and Pintucchi (Eur J Mech A/Solids 26:88–105,
2007
). As usual, for that the Galerkin method has been used. As an illustration, two numerical examples (slender masonry tower and masonry arch) are presented in this paper with the applied forces corresponding to the acceleration in the earthquake in Emilia Romagna in May 29, 2012.</description><identifier>ISSN: 0935-1175</identifier><identifier>EISSN: 1432-0959</identifier><identifier>DOI: 10.1007/s00161-014-0352-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Arches ; Beams (structural) ; Classical and Continuum Physics ; Compressive strength ; Earthquakes ; Engineering Thermodynamics ; Galerkin methods ; Heat and Mass Transfer ; Masonry ; Mathematical analysis ; Mathematical models ; Numerical analysis ; Original Article ; Physics ; Physics and Astronomy ; Seismic activity ; Seismic engineering ; Seismic phenomena ; Seismic surveys ; Structural engineering ; Structural Materials ; Theorems ; Theoretical and Applied Mechanics ; Viscosity</subject><ispartof>Continuum mechanics and thermodynamics, 2015-05, Vol.27 (3), p.349-365</ispartof><rights>Springer-Verlag Berlin Heidelberg 2014</rights><rights>COPYRIGHT 2015 Springer</rights><rights>Springer-Verlag Berlin Heidelberg 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-4b76183eb694cc75779f828807dfcec898e36797be04cf8b705e76981fac58b43</citedby><cites>FETCH-LOGICAL-c458t-4b76183eb694cc75779f828807dfcec898e36797be04cf8b705e76981fac58b43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00161-014-0352-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00161-014-0352-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Lucchesi, M.</creatorcontrib><creatorcontrib>Pintucchi, B.</creatorcontrib><creatorcontrib>Šilhavý, M.</creatorcontrib><creatorcontrib>Zani, N.</creatorcontrib><title>On the dynamics of viscous masonry beams</title><title>Continuum mechanics and thermodynamics</title><addtitle>Continuum Mech. Thermodyn</addtitle><description>In this paper, we consider the longitudinal and transversal vibrations of the masonry beams and arches. The basic motivation is the seismic vulnerability analysis of masonry structures that can be modeled as monodimensional elements. The Euler–Bernoulli hypothesis is employed for the system of forces in the beam. The axial force and the bending moment are assumed to consist of the elastic and viscous parts. The elastic part is described by the no-tension material, i.e., the material with no resistance to tension and which accounts for the cases of limitless, as well as bounded compressive strength. The adaptation of this material to beams has been developed in Orlandi (Analisi non lineare di strutture ad arco in muratura. Thesis,
1999
) and Zani (Eur J Mech A/Solids 23:467–484,
2004
). The viscous part amounts to the Kelvin–Voigt damping depending linearly on the time derivatives of the linearized strain and curvature. The dynamical equations are formulated, and a mathematical analysis of them is presented. Specifically, following Gajewski et al. (Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen. Akademie-Verlag, Berlin,
1974
), the theorems of existence, uniqueness and regularity of the solution of the dynamical equations are recapitulated and specialized for our purposes, to support the numerical analysis applied previously in Lucchesi and Pintucchi (Eur J Mech A/Solids 26:88–105,
2007
). As usual, for that the Galerkin method has been used. As an illustration, two numerical examples (slender masonry tower and masonry arch) are presented in this paper with the applied forces corresponding to the acceleration in the earthquake in Emilia Romagna in May 29, 2012.</description><subject>Analysis</subject><subject>Arches</subject><subject>Beams (structural)</subject><subject>Classical and Continuum Physics</subject><subject>Compressive strength</subject><subject>Earthquakes</subject><subject>Engineering Thermodynamics</subject><subject>Galerkin methods</subject><subject>Heat and Mass Transfer</subject><subject>Masonry</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Numerical analysis</subject><subject>Original Article</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Seismic activity</subject><subject>Seismic engineering</subject><subject>Seismic phenomena</subject><subject>Seismic surveys</subject><subject>Structural engineering</subject><subject>Structural Materials</subject><subject>Theorems</subject><subject>Theoretical and Applied Mechanics</subject><subject>Viscosity</subject><issn>0935-1175</issn><issn>1432-0959</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kE1LAzEURYMoWKs_wN2Am26iyeR7WYpfUOhG1yGTJnXKTFKTqTD_3pRxIYK8ReBx7uPmAHCL0T1GSDxkhDDHEGEKEWE1HM_ADFNSQ6SYOgczpAiDGAt2Ca5y3qOSUYzMwGITquHDVdsxmL61uYq--mqzjcdc9SbHkMaqcabP1-DCmy67m593Dt6fHt9WL3C9eX5dLdfQUiYHSBvBsSSu4YpaK5gQystaSiS23jorlXSECyUah6j1shGIOcGVxN5YJhtK5mAx3T2k-Hl0edB9qeO6zgRXSmnMy0nKpeIFvfuD7uMxhdKuUJwWL3XNCnU_UTvTOd0GH4dkbJmtKx-Owfm27JeUYU6IKp7mAE8Bm2LOyXl9SG1v0qgx0ifZepKti2x9kq3HkqmnTC5s2Ln0q8q_oW-N5H9V</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>Lucchesi, M.</creator><creator>Pintucchi, B.</creator><creator>Šilhavý, M.</creator><creator>Zani, N.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>M2P</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7SM</scope></search><sort><creationdate>20150501</creationdate><title>On the dynamics of viscous masonry beams</title><author>Lucchesi, M. ; Pintucchi, B. ; Šilhavý, M. ; Zani, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-4b76183eb694cc75779f828807dfcec898e36797be04cf8b705e76981fac58b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Analysis</topic><topic>Arches</topic><topic>Beams (structural)</topic><topic>Classical and Continuum Physics</topic><topic>Compressive strength</topic><topic>Earthquakes</topic><topic>Engineering Thermodynamics</topic><topic>Galerkin methods</topic><topic>Heat and Mass Transfer</topic><topic>Masonry</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Numerical analysis</topic><topic>Original Article</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Seismic activity</topic><topic>Seismic engineering</topic><topic>Seismic phenomena</topic><topic>Seismic surveys</topic><topic>Structural engineering</topic><topic>Structural Materials</topic><topic>Theorems</topic><topic>Theoretical and Applied Mechanics</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lucchesi, M.</creatorcontrib><creatorcontrib>Pintucchi, B.</creatorcontrib><creatorcontrib>Šilhavý, M.</creatorcontrib><creatorcontrib>Zani, N.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>https://resources.nclive.org/materials</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>Earthquake Engineering Abstracts</collection><jtitle>Continuum mechanics and thermodynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lucchesi, M.</au><au>Pintucchi, B.</au><au>Šilhavý, M.</au><au>Zani, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the dynamics of viscous masonry beams</atitle><jtitle>Continuum mechanics and thermodynamics</jtitle><stitle>Continuum Mech. Thermodyn</stitle><date>2015-05-01</date><risdate>2015</risdate><volume>27</volume><issue>3</issue><spage>349</spage><epage>365</epage><pages>349-365</pages><issn>0935-1175</issn><eissn>1432-0959</eissn><abstract>In this paper, we consider the longitudinal and transversal vibrations of the masonry beams and arches. The basic motivation is the seismic vulnerability analysis of masonry structures that can be modeled as monodimensional elements. The Euler–Bernoulli hypothesis is employed for the system of forces in the beam. The axial force and the bending moment are assumed to consist of the elastic and viscous parts. The elastic part is described by the no-tension material, i.e., the material with no resistance to tension and which accounts for the cases of limitless, as well as bounded compressive strength. The adaptation of this material to beams has been developed in Orlandi (Analisi non lineare di strutture ad arco in muratura. Thesis,
1999
) and Zani (Eur J Mech A/Solids 23:467–484,
2004
). The viscous part amounts to the Kelvin–Voigt damping depending linearly on the time derivatives of the linearized strain and curvature. The dynamical equations are formulated, and a mathematical analysis of them is presented. Specifically, following Gajewski et al. (Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen. Akademie-Verlag, Berlin,
1974
), the theorems of existence, uniqueness and regularity of the solution of the dynamical equations are recapitulated and specialized for our purposes, to support the numerical analysis applied previously in Lucchesi and Pintucchi (Eur J Mech A/Solids 26:88–105,
2007
). As usual, for that the Galerkin method has been used. As an illustration, two numerical examples (slender masonry tower and masonry arch) are presented in this paper with the applied forces corresponding to the acceleration in the earthquake in Emilia Romagna in May 29, 2012.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00161-014-0352-y</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-1175 |
ispartof | Continuum mechanics and thermodynamics, 2015-05, Vol.27 (3), p.349-365 |
issn | 0935-1175 1432-0959 |
language | eng |
recordid | cdi_proquest_miscellaneous_1677946896 |
source | SpringerLink |
subjects | Analysis Arches Beams (structural) Classical and Continuum Physics Compressive strength Earthquakes Engineering Thermodynamics Galerkin methods Heat and Mass Transfer Masonry Mathematical analysis Mathematical models Numerical analysis Original Article Physics Physics and Astronomy Seismic activity Seismic engineering Seismic phenomena Seismic surveys Structural engineering Structural Materials Theorems Theoretical and Applied Mechanics Viscosity |
title | On the dynamics of viscous masonry beams |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T19%3A11%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20dynamics%20of%20viscous%20masonry%20beams&rft.jtitle=Continuum%20mechanics%20and%20thermodynamics&rft.au=Lucchesi,%20M.&rft.date=2015-05-01&rft.volume=27&rft.issue=3&rft.spage=349&rft.epage=365&rft.pages=349-365&rft.issn=0935-1175&rft.eissn=1432-0959&rft_id=info:doi/10.1007/s00161-014-0352-y&rft_dat=%3Cgale_proqu%3EA451633909%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1664100225&rft_id=info:pmid/&rft_galeid=A451633909&rfr_iscdi=true |