On the dynamics of viscous masonry beams

In this paper, we consider the longitudinal and transversal vibrations of the masonry beams and arches. The basic motivation is the seismic vulnerability analysis of masonry structures that can be modeled as monodimensional elements. The Euler–Bernoulli hypothesis is employed for the system of force...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Continuum mechanics and thermodynamics 2015-05, Vol.27 (3), p.349-365
Hauptverfasser: Lucchesi, M., Pintucchi, B., Šilhavý, M., Zani, N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 365
container_issue 3
container_start_page 349
container_title Continuum mechanics and thermodynamics
container_volume 27
creator Lucchesi, M.
Pintucchi, B.
Šilhavý, M.
Zani, N.
description In this paper, we consider the longitudinal and transversal vibrations of the masonry beams and arches. The basic motivation is the seismic vulnerability analysis of masonry structures that can be modeled as monodimensional elements. The Euler–Bernoulli hypothesis is employed for the system of forces in the beam. The axial force and the bending moment are assumed to consist of the elastic and viscous parts. The elastic part is described by the no-tension material, i.e., the material with no resistance to tension and which accounts for the cases of limitless, as well as bounded compressive strength. The adaptation of this material to beams has been developed in Orlandi (Analisi non lineare di strutture ad arco in muratura. Thesis, 1999 ) and Zani (Eur J Mech A/Solids 23:467–484, 2004 ). The viscous part amounts to the Kelvin–Voigt damping depending linearly on the time derivatives of the linearized strain and curvature. The dynamical equations are formulated, and a mathematical analysis of them is presented. Specifically, following Gajewski et al. (Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen. Akademie-Verlag, Berlin, 1974 ), the theorems of existence, uniqueness and regularity of the solution of the dynamical equations are recapitulated and specialized for our purposes, to support the numerical analysis applied previously in Lucchesi and Pintucchi (Eur J Mech A/Solids 26:88–105, 2007 ). As usual, for that the Galerkin method has been used. As an illustration, two numerical examples (slender masonry tower and masonry arch) are presented in this paper with the applied forces corresponding to the acceleration in the earthquake in Emilia Romagna in May 29, 2012.
doi_str_mv 10.1007/s00161-014-0352-y
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677946896</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A451633909</galeid><sourcerecordid>A451633909</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-4b76183eb694cc75779f828807dfcec898e36797be04cf8b705e76981fac58b43</originalsourceid><addsrcrecordid>eNp1kE1LAzEURYMoWKs_wN2Am26iyeR7WYpfUOhG1yGTJnXKTFKTqTD_3pRxIYK8ReBx7uPmAHCL0T1GSDxkhDDHEGEKEWE1HM_ADFNSQ6SYOgczpAiDGAt2Ca5y3qOSUYzMwGITquHDVdsxmL61uYq--mqzjcdc9SbHkMaqcabP1-DCmy67m593Dt6fHt9WL3C9eX5dLdfQUiYHSBvBsSSu4YpaK5gQystaSiS23jorlXSECyUah6j1shGIOcGVxN5YJhtK5mAx3T2k-Hl0edB9qeO6zgRXSmnMy0nKpeIFvfuD7uMxhdKuUJwWL3XNCnU_UTvTOd0GH4dkbJmtKx-Owfm27JeUYU6IKp7mAE8Bm2LOyXl9SG1v0qgx0ifZepKti2x9kq3HkqmnTC5s2Ln0q8q_oW-N5H9V</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1664100225</pqid></control><display><type>article</type><title>On the dynamics of viscous masonry beams</title><source>SpringerLink</source><creator>Lucchesi, M. ; Pintucchi, B. ; Šilhavý, M. ; Zani, N.</creator><creatorcontrib>Lucchesi, M. ; Pintucchi, B. ; Šilhavý, M. ; Zani, N.</creatorcontrib><description>In this paper, we consider the longitudinal and transversal vibrations of the masonry beams and arches. The basic motivation is the seismic vulnerability analysis of masonry structures that can be modeled as monodimensional elements. The Euler–Bernoulli hypothesis is employed for the system of forces in the beam. The axial force and the bending moment are assumed to consist of the elastic and viscous parts. The elastic part is described by the no-tension material, i.e., the material with no resistance to tension and which accounts for the cases of limitless, as well as bounded compressive strength. The adaptation of this material to beams has been developed in Orlandi (Analisi non lineare di strutture ad arco in muratura. Thesis, 1999 ) and Zani (Eur J Mech A/Solids 23:467–484, 2004 ). The viscous part amounts to the Kelvin–Voigt damping depending linearly on the time derivatives of the linearized strain and curvature. The dynamical equations are formulated, and a mathematical analysis of them is presented. Specifically, following Gajewski et al. (Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen. Akademie-Verlag, Berlin, 1974 ), the theorems of existence, uniqueness and regularity of the solution of the dynamical equations are recapitulated and specialized for our purposes, to support the numerical analysis applied previously in Lucchesi and Pintucchi (Eur J Mech A/Solids 26:88–105, 2007 ). As usual, for that the Galerkin method has been used. As an illustration, two numerical examples (slender masonry tower and masonry arch) are presented in this paper with the applied forces corresponding to the acceleration in the earthquake in Emilia Romagna in May 29, 2012.</description><identifier>ISSN: 0935-1175</identifier><identifier>EISSN: 1432-0959</identifier><identifier>DOI: 10.1007/s00161-014-0352-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Arches ; Beams (structural) ; Classical and Continuum Physics ; Compressive strength ; Earthquakes ; Engineering Thermodynamics ; Galerkin methods ; Heat and Mass Transfer ; Masonry ; Mathematical analysis ; Mathematical models ; Numerical analysis ; Original Article ; Physics ; Physics and Astronomy ; Seismic activity ; Seismic engineering ; Seismic phenomena ; Seismic surveys ; Structural engineering ; Structural Materials ; Theorems ; Theoretical and Applied Mechanics ; Viscosity</subject><ispartof>Continuum mechanics and thermodynamics, 2015-05, Vol.27 (3), p.349-365</ispartof><rights>Springer-Verlag Berlin Heidelberg 2014</rights><rights>COPYRIGHT 2015 Springer</rights><rights>Springer-Verlag Berlin Heidelberg 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-4b76183eb694cc75779f828807dfcec898e36797be04cf8b705e76981fac58b43</citedby><cites>FETCH-LOGICAL-c458t-4b76183eb694cc75779f828807dfcec898e36797be04cf8b705e76981fac58b43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00161-014-0352-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00161-014-0352-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Lucchesi, M.</creatorcontrib><creatorcontrib>Pintucchi, B.</creatorcontrib><creatorcontrib>Šilhavý, M.</creatorcontrib><creatorcontrib>Zani, N.</creatorcontrib><title>On the dynamics of viscous masonry beams</title><title>Continuum mechanics and thermodynamics</title><addtitle>Continuum Mech. Thermodyn</addtitle><description>In this paper, we consider the longitudinal and transversal vibrations of the masonry beams and arches. The basic motivation is the seismic vulnerability analysis of masonry structures that can be modeled as monodimensional elements. The Euler–Bernoulli hypothesis is employed for the system of forces in the beam. The axial force and the bending moment are assumed to consist of the elastic and viscous parts. The elastic part is described by the no-tension material, i.e., the material with no resistance to tension and which accounts for the cases of limitless, as well as bounded compressive strength. The adaptation of this material to beams has been developed in Orlandi (Analisi non lineare di strutture ad arco in muratura. Thesis, 1999 ) and Zani (Eur J Mech A/Solids 23:467–484, 2004 ). The viscous part amounts to the Kelvin–Voigt damping depending linearly on the time derivatives of the linearized strain and curvature. The dynamical equations are formulated, and a mathematical analysis of them is presented. Specifically, following Gajewski et al. (Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen. Akademie-Verlag, Berlin, 1974 ), the theorems of existence, uniqueness and regularity of the solution of the dynamical equations are recapitulated and specialized for our purposes, to support the numerical analysis applied previously in Lucchesi and Pintucchi (Eur J Mech A/Solids 26:88–105, 2007 ). As usual, for that the Galerkin method has been used. As an illustration, two numerical examples (slender masonry tower and masonry arch) are presented in this paper with the applied forces corresponding to the acceleration in the earthquake in Emilia Romagna in May 29, 2012.</description><subject>Analysis</subject><subject>Arches</subject><subject>Beams (structural)</subject><subject>Classical and Continuum Physics</subject><subject>Compressive strength</subject><subject>Earthquakes</subject><subject>Engineering Thermodynamics</subject><subject>Galerkin methods</subject><subject>Heat and Mass Transfer</subject><subject>Masonry</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Numerical analysis</subject><subject>Original Article</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Seismic activity</subject><subject>Seismic engineering</subject><subject>Seismic phenomena</subject><subject>Seismic surveys</subject><subject>Structural engineering</subject><subject>Structural Materials</subject><subject>Theorems</subject><subject>Theoretical and Applied Mechanics</subject><subject>Viscosity</subject><issn>0935-1175</issn><issn>1432-0959</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kE1LAzEURYMoWKs_wN2Am26iyeR7WYpfUOhG1yGTJnXKTFKTqTD_3pRxIYK8ReBx7uPmAHCL0T1GSDxkhDDHEGEKEWE1HM_ADFNSQ6SYOgczpAiDGAt2Ca5y3qOSUYzMwGITquHDVdsxmL61uYq--mqzjcdc9SbHkMaqcabP1-DCmy67m593Dt6fHt9WL3C9eX5dLdfQUiYHSBvBsSSu4YpaK5gQystaSiS23jorlXSECyUah6j1shGIOcGVxN5YJhtK5mAx3T2k-Hl0edB9qeO6zgRXSmnMy0nKpeIFvfuD7uMxhdKuUJwWL3XNCnU_UTvTOd0GH4dkbJmtKx-Owfm27JeUYU6IKp7mAE8Bm2LOyXl9SG1v0qgx0ifZepKti2x9kq3HkqmnTC5s2Ln0q8q_oW-N5H9V</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>Lucchesi, M.</creator><creator>Pintucchi, B.</creator><creator>Šilhavý, M.</creator><creator>Zani, N.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>M2P</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7SM</scope></search><sort><creationdate>20150501</creationdate><title>On the dynamics of viscous masonry beams</title><author>Lucchesi, M. ; Pintucchi, B. ; Šilhavý, M. ; Zani, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-4b76183eb694cc75779f828807dfcec898e36797be04cf8b705e76981fac58b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Analysis</topic><topic>Arches</topic><topic>Beams (structural)</topic><topic>Classical and Continuum Physics</topic><topic>Compressive strength</topic><topic>Earthquakes</topic><topic>Engineering Thermodynamics</topic><topic>Galerkin methods</topic><topic>Heat and Mass Transfer</topic><topic>Masonry</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Numerical analysis</topic><topic>Original Article</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Seismic activity</topic><topic>Seismic engineering</topic><topic>Seismic phenomena</topic><topic>Seismic surveys</topic><topic>Structural engineering</topic><topic>Structural Materials</topic><topic>Theorems</topic><topic>Theoretical and Applied Mechanics</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lucchesi, M.</creatorcontrib><creatorcontrib>Pintucchi, B.</creatorcontrib><creatorcontrib>Šilhavý, M.</creatorcontrib><creatorcontrib>Zani, N.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>https://resources.nclive.org/materials</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>Earthquake Engineering Abstracts</collection><jtitle>Continuum mechanics and thermodynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lucchesi, M.</au><au>Pintucchi, B.</au><au>Šilhavý, M.</au><au>Zani, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the dynamics of viscous masonry beams</atitle><jtitle>Continuum mechanics and thermodynamics</jtitle><stitle>Continuum Mech. Thermodyn</stitle><date>2015-05-01</date><risdate>2015</risdate><volume>27</volume><issue>3</issue><spage>349</spage><epage>365</epage><pages>349-365</pages><issn>0935-1175</issn><eissn>1432-0959</eissn><abstract>In this paper, we consider the longitudinal and transversal vibrations of the masonry beams and arches. The basic motivation is the seismic vulnerability analysis of masonry structures that can be modeled as monodimensional elements. The Euler–Bernoulli hypothesis is employed for the system of forces in the beam. The axial force and the bending moment are assumed to consist of the elastic and viscous parts. The elastic part is described by the no-tension material, i.e., the material with no resistance to tension and which accounts for the cases of limitless, as well as bounded compressive strength. The adaptation of this material to beams has been developed in Orlandi (Analisi non lineare di strutture ad arco in muratura. Thesis, 1999 ) and Zani (Eur J Mech A/Solids 23:467–484, 2004 ). The viscous part amounts to the Kelvin–Voigt damping depending linearly on the time derivatives of the linearized strain and curvature. The dynamical equations are formulated, and a mathematical analysis of them is presented. Specifically, following Gajewski et al. (Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen. Akademie-Verlag, Berlin, 1974 ), the theorems of existence, uniqueness and regularity of the solution of the dynamical equations are recapitulated and specialized for our purposes, to support the numerical analysis applied previously in Lucchesi and Pintucchi (Eur J Mech A/Solids 26:88–105, 2007 ). As usual, for that the Galerkin method has been used. As an illustration, two numerical examples (slender masonry tower and masonry arch) are presented in this paper with the applied forces corresponding to the acceleration in the earthquake in Emilia Romagna in May 29, 2012.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00161-014-0352-y</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0935-1175
ispartof Continuum mechanics and thermodynamics, 2015-05, Vol.27 (3), p.349-365
issn 0935-1175
1432-0959
language eng
recordid cdi_proquest_miscellaneous_1677946896
source SpringerLink
subjects Analysis
Arches
Beams (structural)
Classical and Continuum Physics
Compressive strength
Earthquakes
Engineering Thermodynamics
Galerkin methods
Heat and Mass Transfer
Masonry
Mathematical analysis
Mathematical models
Numerical analysis
Original Article
Physics
Physics and Astronomy
Seismic activity
Seismic engineering
Seismic phenomena
Seismic surveys
Structural engineering
Structural Materials
Theorems
Theoretical and Applied Mechanics
Viscosity
title On the dynamics of viscous masonry beams
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T19%3A11%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20dynamics%20of%20viscous%20masonry%20beams&rft.jtitle=Continuum%20mechanics%20and%20thermodynamics&rft.au=Lucchesi,%20M.&rft.date=2015-05-01&rft.volume=27&rft.issue=3&rft.spage=349&rft.epage=365&rft.pages=349-365&rft.issn=0935-1175&rft.eissn=1432-0959&rft_id=info:doi/10.1007/s00161-014-0352-y&rft_dat=%3Cgale_proqu%3EA451633909%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1664100225&rft_id=info:pmid/&rft_galeid=A451633909&rfr_iscdi=true