Seed-Induced Growth of Flower-Like Au-Ni-ZnO Metal-Semiconductor Hybrid Nanocrystals for Photocatalytic Applications

The combination of metal and semiconductor components in nanoscale to form a hybrid nanocrystal provides an important approach for achieving advanced functional materials with special optical, magnetic and photocatalytic functionalities. Here, a facile solution method is reported for the synthesis o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2015-03, Vol.11 (12), p.1460-1469
Hauptverfasser: Chen, Yuanzhi, Zeng, Deqian, Cortie, Michael B., Dowd, Annette, Guo, Huizhang, Wang, Junbao, Peng, Dong-Liang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1469
container_issue 12
container_start_page 1460
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 11
creator Chen, Yuanzhi
Zeng, Deqian
Cortie, Michael B.
Dowd, Annette
Guo, Huizhang
Wang, Junbao
Peng, Dong-Liang
description The combination of metal and semiconductor components in nanoscale to form a hybrid nanocrystal provides an important approach for achieving advanced functional materials with special optical, magnetic and photocatalytic functionalities. Here, a facile solution method is reported for the synthesis of Au–Ni–ZnO metal–semiconductor hybrid nanocrystals with a flower‐like morphology and multifunctional properties. This synthetic strategy uses noble and magnetic metal Au@Ni nanocrystal seeds formed in situ to induce the heteroepitaxial growth of semiconducting ZnO nanopyramids onto the surface of metal cores. Evidence of epitaxial growth of ZnO{0001} facets on Ni {111} facets is observed on the heterojunction, even though there is a large lattice mismatch between the semiconducting and magnetic components. Adjustment of the amount of Au and Ni precursors can control the size and composition of the metal core, and consequently modify the surface plasmon resonance (SPR) and magnetic properties. Room‐temperature superparamagnetic properties can be achieved by tuning the size of Ni core. The as‐prepared Au–Ni–ZnO nanocrystals are strongly photocatalytic and can be separated and re‐cycled by virtue of their magnetic properties. The simultaneous combination of plasmonic, semiconducting and magnetic components within a single hybrid nanocrystal furnishes it multifunctionalities that may find wide potential applications. Au–Ni–ZnO ternary metal–semiconductor hybrid nanocrystals are synthesized using a method that utilizes Au@Ni seeds formed in situ to induce the epitaxial growth of ZnO {0001} facets on Ni {111} facets. Excellent photocatalytic properties along with magnetic recycling ability are achieved. The prepared nanocrystals possess plasmonic, semiconducting, and magnetic functionalities and are expected to find wide application in multiple technological fields.
doi_str_mv 10.1002/smll.201401853
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677946363</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1677946363</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4443-e9c552a150faa4a6414f20fbcc038a6e20d839131948bd03d265f7c954048e8e3</originalsourceid><addsrcrecordid>eNqNkUtv1DAURiMEoqWwZYkssWHjwe8ky1FFp5UyU6TwEhvL49yobpN4sBMN-fd4NGWE2MDq3mud70jWl2WvKVlQQtj72HfdghEqCC0kf5KdU0U5VgUrn552Ss6yFzHeE8IpE_nz7IxJLpXk6jwba4AG3wzNZKFBq-D34x3yLbrq_B4CrtwDoOWENw5_H27RGkbT4Rp6Z_0hMvqArudtcA3amMHbMMcERNSm9493fvTWpHsenUXL3a5z6XR-iC-zZ23C4NXjvMg-X334dHmNq9vVzeWywlYIwTGUVkpmqCStMcIoQUXLSLu1lvDCKGCkKXhJOS1FsW0Ib5iSbW5LKYgooAB-kb07enfB_5ggjrp30ULXmQH8FDVVeV4KxRX_D1SpnOWMsIS-_Qu991MY0kcOlJC5KrhI1OJI2eBjDNDqXXC9CbOmRB-q04fq9Km6FHjzqJ22PTQn_HdXCSiPwN51MP9Dp-t1Vf0px8esiyP8PGVNeNAq57nUXzerpPm2ll_qWtf8F1UQs_8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1664576834</pqid></control><display><type>article</type><title>Seed-Induced Growth of Flower-Like Au-Ni-ZnO Metal-Semiconductor Hybrid Nanocrystals for Photocatalytic Applications</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Chen, Yuanzhi ; Zeng, Deqian ; Cortie, Michael B. ; Dowd, Annette ; Guo, Huizhang ; Wang, Junbao ; Peng, Dong-Liang</creator><creatorcontrib>Chen, Yuanzhi ; Zeng, Deqian ; Cortie, Michael B. ; Dowd, Annette ; Guo, Huizhang ; Wang, Junbao ; Peng, Dong-Liang</creatorcontrib><description>The combination of metal and semiconductor components in nanoscale to form a hybrid nanocrystal provides an important approach for achieving advanced functional materials with special optical, magnetic and photocatalytic functionalities. Here, a facile solution method is reported for the synthesis of Au–Ni–ZnO metal–semiconductor hybrid nanocrystals with a flower‐like morphology and multifunctional properties. This synthetic strategy uses noble and magnetic metal Au@Ni nanocrystal seeds formed in situ to induce the heteroepitaxial growth of semiconducting ZnO nanopyramids onto the surface of metal cores. Evidence of epitaxial growth of ZnO{0001} facets on Ni {111} facets is observed on the heterojunction, even though there is a large lattice mismatch between the semiconducting and magnetic components. Adjustment of the amount of Au and Ni precursors can control the size and composition of the metal core, and consequently modify the surface plasmon resonance (SPR) and magnetic properties. Room‐temperature superparamagnetic properties can be achieved by tuning the size of Ni core. The as‐prepared Au–Ni–ZnO nanocrystals are strongly photocatalytic and can be separated and re‐cycled by virtue of their magnetic properties. The simultaneous combination of plasmonic, semiconducting and magnetic components within a single hybrid nanocrystal furnishes it multifunctionalities that may find wide potential applications. Au–Ni–ZnO ternary metal–semiconductor hybrid nanocrystals are synthesized using a method that utilizes Au@Ni seeds formed in situ to induce the epitaxial growth of ZnO {0001} facets on Ni {111} facets. Excellent photocatalytic properties along with magnetic recycling ability are achieved. The prepared nanocrystals possess plasmonic, semiconducting, and magnetic functionalities and are expected to find wide application in multiple technological fields.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.201401853</identifier><identifier>PMID: 25356536</identifier><language>eng</language><publisher>Germany: Blackwell Publishing Ltd</publisher><subject>Epitaxial growth ; Gold ; hybrid materials ; magnetic nanoparticles ; Magnetic properties ; Nanocrystals ; Nanostructure ; Nanotechnology ; Nickel ; Photocatalysis ; Semiconductors ; zinc oxide</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2015-03, Vol.11 (12), p.1460-1469</ispartof><rights>2014 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2014 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>Copyright © 2015 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4443-e9c552a150faa4a6414f20fbcc038a6e20d839131948bd03d265f7c954048e8e3</citedby><cites>FETCH-LOGICAL-c4443-e9c552a150faa4a6414f20fbcc038a6e20d839131948bd03d265f7c954048e8e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.201401853$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.201401853$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27911,27912,45561,45562</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25356536$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Yuanzhi</creatorcontrib><creatorcontrib>Zeng, Deqian</creatorcontrib><creatorcontrib>Cortie, Michael B.</creatorcontrib><creatorcontrib>Dowd, Annette</creatorcontrib><creatorcontrib>Guo, Huizhang</creatorcontrib><creatorcontrib>Wang, Junbao</creatorcontrib><creatorcontrib>Peng, Dong-Liang</creatorcontrib><title>Seed-Induced Growth of Flower-Like Au-Ni-ZnO Metal-Semiconductor Hybrid Nanocrystals for Photocatalytic Applications</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>The combination of metal and semiconductor components in nanoscale to form a hybrid nanocrystal provides an important approach for achieving advanced functional materials with special optical, magnetic and photocatalytic functionalities. Here, a facile solution method is reported for the synthesis of Au–Ni–ZnO metal–semiconductor hybrid nanocrystals with a flower‐like morphology and multifunctional properties. This synthetic strategy uses noble and magnetic metal Au@Ni nanocrystal seeds formed in situ to induce the heteroepitaxial growth of semiconducting ZnO nanopyramids onto the surface of metal cores. Evidence of epitaxial growth of ZnO{0001} facets on Ni {111} facets is observed on the heterojunction, even though there is a large lattice mismatch between the semiconducting and magnetic components. Adjustment of the amount of Au and Ni precursors can control the size and composition of the metal core, and consequently modify the surface plasmon resonance (SPR) and magnetic properties. Room‐temperature superparamagnetic properties can be achieved by tuning the size of Ni core. The as‐prepared Au–Ni–ZnO nanocrystals are strongly photocatalytic and can be separated and re‐cycled by virtue of their magnetic properties. The simultaneous combination of plasmonic, semiconducting and magnetic components within a single hybrid nanocrystal furnishes it multifunctionalities that may find wide potential applications. Au–Ni–ZnO ternary metal–semiconductor hybrid nanocrystals are synthesized using a method that utilizes Au@Ni seeds formed in situ to induce the epitaxial growth of ZnO {0001} facets on Ni {111} facets. Excellent photocatalytic properties along with magnetic recycling ability are achieved. The prepared nanocrystals possess plasmonic, semiconducting, and magnetic functionalities and are expected to find wide application in multiple technological fields.</description><subject>Epitaxial growth</subject><subject>Gold</subject><subject>hybrid materials</subject><subject>magnetic nanoparticles</subject><subject>Magnetic properties</subject><subject>Nanocrystals</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>Nickel</subject><subject>Photocatalysis</subject><subject>Semiconductors</subject><subject>zinc oxide</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkUtv1DAURiMEoqWwZYkssWHjwe8ky1FFp5UyU6TwEhvL49yobpN4sBMN-fd4NGWE2MDq3mud70jWl2WvKVlQQtj72HfdghEqCC0kf5KdU0U5VgUrn552Ss6yFzHeE8IpE_nz7IxJLpXk6jwba4AG3wzNZKFBq-D34x3yLbrq_B4CrtwDoOWENw5_H27RGkbT4Rp6Z_0hMvqArudtcA3amMHbMMcERNSm9493fvTWpHsenUXL3a5z6XR-iC-zZ23C4NXjvMg-X334dHmNq9vVzeWywlYIwTGUVkpmqCStMcIoQUXLSLu1lvDCKGCkKXhJOS1FsW0Ib5iSbW5LKYgooAB-kb07enfB_5ggjrp30ULXmQH8FDVVeV4KxRX_D1SpnOWMsIS-_Qu991MY0kcOlJC5KrhI1OJI2eBjDNDqXXC9CbOmRB-q04fq9Km6FHjzqJ22PTQn_HdXCSiPwN51MP9Dp-t1Vf0px8esiyP8PGVNeNAq57nUXzerpPm2ll_qWtf8F1UQs_8</recordid><startdate>20150325</startdate><enddate>20150325</enddate><creator>Chen, Yuanzhi</creator><creator>Zeng, Deqian</creator><creator>Cortie, Michael B.</creator><creator>Dowd, Annette</creator><creator>Guo, Huizhang</creator><creator>Wang, Junbao</creator><creator>Peng, Dong-Liang</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20150325</creationdate><title>Seed-Induced Growth of Flower-Like Au-Ni-ZnO Metal-Semiconductor Hybrid Nanocrystals for Photocatalytic Applications</title><author>Chen, Yuanzhi ; Zeng, Deqian ; Cortie, Michael B. ; Dowd, Annette ; Guo, Huizhang ; Wang, Junbao ; Peng, Dong-Liang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4443-e9c552a150faa4a6414f20fbcc038a6e20d839131948bd03d265f7c954048e8e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Epitaxial growth</topic><topic>Gold</topic><topic>hybrid materials</topic><topic>magnetic nanoparticles</topic><topic>Magnetic properties</topic><topic>Nanocrystals</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>Nickel</topic><topic>Photocatalysis</topic><topic>Semiconductors</topic><topic>zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Yuanzhi</creatorcontrib><creatorcontrib>Zeng, Deqian</creatorcontrib><creatorcontrib>Cortie, Michael B.</creatorcontrib><creatorcontrib>Dowd, Annette</creatorcontrib><creatorcontrib>Guo, Huizhang</creatorcontrib><creatorcontrib>Wang, Junbao</creatorcontrib><creatorcontrib>Peng, Dong-Liang</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Yuanzhi</au><au>Zeng, Deqian</au><au>Cortie, Michael B.</au><au>Dowd, Annette</au><au>Guo, Huizhang</au><au>Wang, Junbao</au><au>Peng, Dong-Liang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Seed-Induced Growth of Flower-Like Au-Ni-ZnO Metal-Semiconductor Hybrid Nanocrystals for Photocatalytic Applications</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2015-03-25</date><risdate>2015</risdate><volume>11</volume><issue>12</issue><spage>1460</spage><epage>1469</epage><pages>1460-1469</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>The combination of metal and semiconductor components in nanoscale to form a hybrid nanocrystal provides an important approach for achieving advanced functional materials with special optical, magnetic and photocatalytic functionalities. Here, a facile solution method is reported for the synthesis of Au–Ni–ZnO metal–semiconductor hybrid nanocrystals with a flower‐like morphology and multifunctional properties. This synthetic strategy uses noble and magnetic metal Au@Ni nanocrystal seeds formed in situ to induce the heteroepitaxial growth of semiconducting ZnO nanopyramids onto the surface of metal cores. Evidence of epitaxial growth of ZnO{0001} facets on Ni {111} facets is observed on the heterojunction, even though there is a large lattice mismatch between the semiconducting and magnetic components. Adjustment of the amount of Au and Ni precursors can control the size and composition of the metal core, and consequently modify the surface plasmon resonance (SPR) and magnetic properties. Room‐temperature superparamagnetic properties can be achieved by tuning the size of Ni core. The as‐prepared Au–Ni–ZnO nanocrystals are strongly photocatalytic and can be separated and re‐cycled by virtue of their magnetic properties. The simultaneous combination of plasmonic, semiconducting and magnetic components within a single hybrid nanocrystal furnishes it multifunctionalities that may find wide potential applications. Au–Ni–ZnO ternary metal–semiconductor hybrid nanocrystals are synthesized using a method that utilizes Au@Ni seeds formed in situ to induce the epitaxial growth of ZnO {0001} facets on Ni {111} facets. Excellent photocatalytic properties along with magnetic recycling ability are achieved. The prepared nanocrystals possess plasmonic, semiconducting, and magnetic functionalities and are expected to find wide application in multiple technological fields.</abstract><cop>Germany</cop><pub>Blackwell Publishing Ltd</pub><pmid>25356536</pmid><doi>10.1002/smll.201401853</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2015-03, Vol.11 (12), p.1460-1469
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_miscellaneous_1677946363
source Wiley Online Library Journals Frontfile Complete
subjects Epitaxial growth
Gold
hybrid materials
magnetic nanoparticles
Magnetic properties
Nanocrystals
Nanostructure
Nanotechnology
Nickel
Photocatalysis
Semiconductors
zinc oxide
title Seed-Induced Growth of Flower-Like Au-Ni-ZnO Metal-Semiconductor Hybrid Nanocrystals for Photocatalytic Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T02%3A51%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Seed-Induced%20Growth%20of%20Flower-Like%20Au-Ni-ZnO%20Metal-Semiconductor%20Hybrid%20Nanocrystals%20for%20Photocatalytic%20Applications&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Chen,%20Yuanzhi&rft.date=2015-03-25&rft.volume=11&rft.issue=12&rft.spage=1460&rft.epage=1469&rft.pages=1460-1469&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.201401853&rft_dat=%3Cproquest_cross%3E1677946363%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1664576834&rft_id=info:pmid/25356536&rfr_iscdi=true