Improved analysis of Organic Rankine Cycle based on radial flow turbine
With attention to the drawback of specifying isentropic efficiency of expander (or turbine) in Organic Rankine Cycle (ORC) analysis, in order to enhance reliability of analysis results, this article replaces the constant isentropic efficiency by internal efficiency of optimal radial flow turbine for...
Gespeichert in:
Veröffentlicht in: | Applied thermal engineering 2013-11, Vol.61 (2), p.606-615 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 615 |
---|---|
container_issue | 2 |
container_start_page | 606 |
container_title | Applied thermal engineering |
container_volume | 61 |
creator | Pan, Lisheng Wang, Huaixin |
description | With attention to the drawback of specifying isentropic efficiency of expander (or turbine) in Organic Rankine Cycle (ORC) analysis, in order to enhance reliability of analysis results, this article replaces the constant isentropic efficiency by internal efficiency of optimal radial flow turbine for each condition. With both analysis methods, namely internal efficiency analysis method and conventional analysis method, 14 subcritical ORC working fluids are studied with hot water of 90 °C, pinch point temperature of 5 °C and condensing temperature of 30 °C. Results with both analysis methods are compared. The results show that turbine internal efficiency is determined by expansion ratio in rotor and decreases with the rise of expansion ratio in rotor. There are differences between cycle net power output with internal efficiency analysis method and that with conventional analysis method. The differences can change the results in optimizing fluid. It is significant to apply computational optimal efficiency instead of constant isentropic efficiency in ORC analysis.
•The analysis method for ORC is improved based on radial flow turbine.•Conventional method may cause some error in optimizing fluids and conditions.•Expansion ratio determines internal efficiency of optimal radial flow turbine.•HFC227ea gives the highest net power output per unit mass flow rate of hot water. |
doi_str_mv | 10.1016/j.applthermaleng.2013.08.019 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677944735</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359431113006005</els_id><sourcerecordid>1677944735</sourcerecordid><originalsourceid>FETCH-LOGICAL-c513t-8d615e60029d376d2b9a02d48e1cecfe7db117c5d30f1731d981c82ae585956c3</originalsourceid><addsrcrecordid>eNqNkU9rGzEQxXVooInb76BDA714o1mtVlropZjmDwQCpT2LsTSbypG1jrRO8LePgkOhp2Yuc_nNe495jH0B0YCA_mLT4G4X5z-Utxgp3TetANkI0wgYPrBTkGpYdhLgIzsrZSMEtEZ3p-zqZrvL0xN5jgnjoYTCp5Hf5XtMwfGfmB5CIr46uEh8jaVyU-IZfcDIxzg983mf1xX5xE5GjIU-v-0F-33549fqenl7d3Wz-n67dArkvDS-B0W9EO3gpe59ux5QtL4zBI7cSNqvAbRTXooRtAQ_GHCmRVJGDap3csG-HnVr6sc9ldluQ3EUIyaa9sVCr_XQdVqq_6Oqgw5apfp3oCC7OgYq-u2IujyVkmm0uxy2mA8WhH1twm7sv03Y1yasMLY2Uc_P35ywOIxjxuRC-avRGiFB1_gLdnnkqD7zKVC2xQVKjnzI5Gbrp_A-wxehHagn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1513444481</pqid></control><display><type>article</type><title>Improved analysis of Organic Rankine Cycle based on radial flow turbine</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Pan, Lisheng ; Wang, Huaixin</creator><creatorcontrib>Pan, Lisheng ; Wang, Huaixin</creatorcontrib><description>With attention to the drawback of specifying isentropic efficiency of expander (or turbine) in Organic Rankine Cycle (ORC) analysis, in order to enhance reliability of analysis results, this article replaces the constant isentropic efficiency by internal efficiency of optimal radial flow turbine for each condition. With both analysis methods, namely internal efficiency analysis method and conventional analysis method, 14 subcritical ORC working fluids are studied with hot water of 90 °C, pinch point temperature of 5 °C and condensing temperature of 30 °C. Results with both analysis methods are compared. The results show that turbine internal efficiency is determined by expansion ratio in rotor and decreases with the rise of expansion ratio in rotor. There are differences between cycle net power output with internal efficiency analysis method and that with conventional analysis method. The differences can change the results in optimizing fluid. It is significant to apply computational optimal efficiency instead of constant isentropic efficiency in ORC analysis.
•The analysis method for ORC is improved based on radial flow turbine.•Conventional method may cause some error in optimizing fluids and conditions.•Expansion ratio determines internal efficiency of optimal radial flow turbine.•HFC227ea gives the highest net power output per unit mass flow rate of hot water.</description><identifier>ISSN: 1359-4311</identifier><identifier>DOI: 10.1016/j.applthermaleng.2013.08.019</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Computational fluid dynamics ; Energy ; Energy. Thermal use of fuels ; Engines and turbines ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Heat recovery ; Heat transfer ; Hot water ; Internal efficiency analysis method ; Optimization ; Optimization analysis ; Organic Rankine Cycle (ORC) ; Radial flow ; Radial flow turbine ; Rankine cycle ; Rotors ; Theoretical studies. Data and constants. Metering ; Turbines</subject><ispartof>Applied thermal engineering, 2013-11, Vol.61 (2), p.606-615</ispartof><rights>2013 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c513t-8d615e60029d376d2b9a02d48e1cecfe7db117c5d30f1731d981c82ae585956c3</citedby><cites>FETCH-LOGICAL-c513t-8d615e60029d376d2b9a02d48e1cecfe7db117c5d30f1731d981c82ae585956c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1359431113006005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28031747$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Pan, Lisheng</creatorcontrib><creatorcontrib>Wang, Huaixin</creatorcontrib><title>Improved analysis of Organic Rankine Cycle based on radial flow turbine</title><title>Applied thermal engineering</title><description>With attention to the drawback of specifying isentropic efficiency of expander (or turbine) in Organic Rankine Cycle (ORC) analysis, in order to enhance reliability of analysis results, this article replaces the constant isentropic efficiency by internal efficiency of optimal radial flow turbine for each condition. With both analysis methods, namely internal efficiency analysis method and conventional analysis method, 14 subcritical ORC working fluids are studied with hot water of 90 °C, pinch point temperature of 5 °C and condensing temperature of 30 °C. Results with both analysis methods are compared. The results show that turbine internal efficiency is determined by expansion ratio in rotor and decreases with the rise of expansion ratio in rotor. There are differences between cycle net power output with internal efficiency analysis method and that with conventional analysis method. The differences can change the results in optimizing fluid. It is significant to apply computational optimal efficiency instead of constant isentropic efficiency in ORC analysis.
•The analysis method for ORC is improved based on radial flow turbine.•Conventional method may cause some error in optimizing fluids and conditions.•Expansion ratio determines internal efficiency of optimal radial flow turbine.•HFC227ea gives the highest net power output per unit mass flow rate of hot water.</description><subject>Applied sciences</subject><subject>Computational fluid dynamics</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Engines and turbines</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Heat recovery</subject><subject>Heat transfer</subject><subject>Hot water</subject><subject>Internal efficiency analysis method</subject><subject>Optimization</subject><subject>Optimization analysis</subject><subject>Organic Rankine Cycle (ORC)</subject><subject>Radial flow</subject><subject>Radial flow turbine</subject><subject>Rankine cycle</subject><subject>Rotors</subject><subject>Theoretical studies. Data and constants. Metering</subject><subject>Turbines</subject><issn>1359-4311</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkU9rGzEQxXVooInb76BDA714o1mtVlropZjmDwQCpT2LsTSbypG1jrRO8LePgkOhp2Yuc_nNe495jH0B0YCA_mLT4G4X5z-Utxgp3TetANkI0wgYPrBTkGpYdhLgIzsrZSMEtEZ3p-zqZrvL0xN5jgnjoYTCp5Hf5XtMwfGfmB5CIr46uEh8jaVyU-IZfcDIxzg983mf1xX5xE5GjIU-v-0F-33549fqenl7d3Wz-n67dArkvDS-B0W9EO3gpe59ux5QtL4zBI7cSNqvAbRTXooRtAQ_GHCmRVJGDap3csG-HnVr6sc9ldluQ3EUIyaa9sVCr_XQdVqq_6Oqgw5apfp3oCC7OgYq-u2IujyVkmm0uxy2mA8WhH1twm7sv03Y1yasMLY2Uc_P35ywOIxjxuRC-avRGiFB1_gLdnnkqD7zKVC2xQVKjnzI5Gbrp_A-wxehHagn</recordid><startdate>20131103</startdate><enddate>20131103</enddate><creator>Pan, Lisheng</creator><creator>Wang, Huaixin</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20131103</creationdate><title>Improved analysis of Organic Rankine Cycle based on radial flow turbine</title><author>Pan, Lisheng ; Wang, Huaixin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c513t-8d615e60029d376d2b9a02d48e1cecfe7db117c5d30f1731d981c82ae585956c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Computational fluid dynamics</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Engines and turbines</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Heat recovery</topic><topic>Heat transfer</topic><topic>Hot water</topic><topic>Internal efficiency analysis method</topic><topic>Optimization</topic><topic>Optimization analysis</topic><topic>Organic Rankine Cycle (ORC)</topic><topic>Radial flow</topic><topic>Radial flow turbine</topic><topic>Rankine cycle</topic><topic>Rotors</topic><topic>Theoretical studies. Data and constants. Metering</topic><topic>Turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, Lisheng</creatorcontrib><creatorcontrib>Wang, Huaixin</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied thermal engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, Lisheng</au><au>Wang, Huaixin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved analysis of Organic Rankine Cycle based on radial flow turbine</atitle><jtitle>Applied thermal engineering</jtitle><date>2013-11-03</date><risdate>2013</risdate><volume>61</volume><issue>2</issue><spage>606</spage><epage>615</epage><pages>606-615</pages><issn>1359-4311</issn><abstract>With attention to the drawback of specifying isentropic efficiency of expander (or turbine) in Organic Rankine Cycle (ORC) analysis, in order to enhance reliability of analysis results, this article replaces the constant isentropic efficiency by internal efficiency of optimal radial flow turbine for each condition. With both analysis methods, namely internal efficiency analysis method and conventional analysis method, 14 subcritical ORC working fluids are studied with hot water of 90 °C, pinch point temperature of 5 °C and condensing temperature of 30 °C. Results with both analysis methods are compared. The results show that turbine internal efficiency is determined by expansion ratio in rotor and decreases with the rise of expansion ratio in rotor. There are differences between cycle net power output with internal efficiency analysis method and that with conventional analysis method. The differences can change the results in optimizing fluid. It is significant to apply computational optimal efficiency instead of constant isentropic efficiency in ORC analysis.
•The analysis method for ORC is improved based on radial flow turbine.•Conventional method may cause some error in optimizing fluids and conditions.•Expansion ratio determines internal efficiency of optimal radial flow turbine.•HFC227ea gives the highest net power output per unit mass flow rate of hot water.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.applthermaleng.2013.08.019</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1359-4311 |
ispartof | Applied thermal engineering, 2013-11, Vol.61 (2), p.606-615 |
issn | 1359-4311 |
language | eng |
recordid | cdi_proquest_miscellaneous_1677944735 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Applied sciences Computational fluid dynamics Energy Energy. Thermal use of fuels Engines and turbines Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc Exact sciences and technology Heat recovery Heat transfer Hot water Internal efficiency analysis method Optimization Optimization analysis Organic Rankine Cycle (ORC) Radial flow Radial flow turbine Rankine cycle Rotors Theoretical studies. Data and constants. Metering Turbines |
title | Improved analysis of Organic Rankine Cycle based on radial flow turbine |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T21%3A48%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20analysis%20of%20Organic%20Rankine%20Cycle%20based%20on%20radial%20flow%20turbine&rft.jtitle=Applied%20thermal%20engineering&rft.au=Pan,%20Lisheng&rft.date=2013-11-03&rft.volume=61&rft.issue=2&rft.spage=606&rft.epage=615&rft.pages=606-615&rft.issn=1359-4311&rft_id=info:doi/10.1016/j.applthermaleng.2013.08.019&rft_dat=%3Cproquest_cross%3E1677944735%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1513444481&rft_id=info:pmid/&rft_els_id=S1359431113006005&rfr_iscdi=true |