Comparison of the methods for preparing a cordierite monolith-supported Cu-Mn mixed-oxide catalyst
BACKGROUND An efficient, quick and simple preparation method is of great importance for mass production of monolithic catalysts in industry. This paper reports a comparison of three methods used to prepare a monolithic Cu–Mn mixed‐oxide/γ‐alumina/cordierite catalyst. RESULTS The catalysts obtained b...
Gespeichert in:
Veröffentlicht in: | Journal of chemical technology and biotechnology (1986) 2014-10, Vol.89 (10), p.1559-1564 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1564 |
---|---|
container_issue | 10 |
container_start_page | 1559 |
container_title | Journal of chemical technology and biotechnology (1986) |
container_volume | 89 |
creator | Wu, Dongfang Li, Wangbing Gao, Rui |
description | BACKGROUND
An efficient, quick and simple preparation method is of great importance for mass production of monolithic catalysts in industry. This paper reports a comparison of three methods used to prepare a monolithic Cu–Mn mixed‐oxide/γ‐alumina/cordierite catalyst.
RESULTS
The catalysts obtained by different methods have significant differences in catalytic activity and mechanical stability, although their chemical crystalline phases are identical. Similar to a conventional two‐step method, the simple one‐step sol dipping method leads to homogeneous distribution of active phase and hence to greater o‐xylene combustion activity, compared with the one‐step solution impregnation method. Furthermore, the one‐step sol dipping method results in the strongest adhesion and cohesion of catalytic material on to the monolithic substrate, followed by the one‐step solution impregnation method and then the conventional two‐step method.
CONCLUSIONS
The one‐step sol dipping method is superior to the other two methods and is therefore recommended for use in the future preparation of monolithic catalysts, especially for mass production of monolithic catalysts in industry. © 2013 Society of Chemical Industry |
doi_str_mv | 10.1002/jctb.4239 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677942967</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1664196649</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5419-65594b7d36ad7670dff70634a1be32611b96333fd84460a9d979bfad459928a43</originalsourceid><addsrcrecordid>eNqN0U9vFCEYBnDSaNJt9dBvQOLFHmj5NzAc7cRWm1UTU_VImIHpss4MIzBx99vLZhsPTUy88B74PYQ3DwAXBF8RjOn1tsvtFadMnYAVwUoiLgR-AVaYihrRSlan4CylLcZY1FSsQNuEcTbRpzDB0MO8cXB0eRNsgn2IcI7ucDs9QgO7EK130edCwhQGnzcoLfMcYnYWNgv6NMHR75xFYeetg53JZtin_Aq87M2Q3OuneQ6-3b5_aD6g9Ze7j827NeoqThQSVaV4Ky0Txkohse17iQXjhrSOUUFIqwRjrLc15wIbZZVUbW8sr5SiteHsHLw9vjvH8GtxKevRp84Ng5lcWJImQkrFqRLyP6goXyqHKvTNM7oNS5zKIkVVqsY14aKoy6PqYkgpul7P0Y8m7jXB-lCMPhSjD8UUe320v_3g9v-G-r55uHlKoGPCp-x2fxMm_tRlGVnpH5_v9Pe1ouSe3Oqv7A9Ovp39</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1659808146</pqid></control><display><type>article</type><title>Comparison of the methods for preparing a cordierite monolith-supported Cu-Mn mixed-oxide catalyst</title><source>Wiley Journals</source><creator>Wu, Dongfang ; Li, Wangbing ; Gao, Rui</creator><creatorcontrib>Wu, Dongfang ; Li, Wangbing ; Gao, Rui</creatorcontrib><description>BACKGROUND
An efficient, quick and simple preparation method is of great importance for mass production of monolithic catalysts in industry. This paper reports a comparison of three methods used to prepare a monolithic Cu–Mn mixed‐oxide/γ‐alumina/cordierite catalyst.
RESULTS
The catalysts obtained by different methods have significant differences in catalytic activity and mechanical stability, although their chemical crystalline phases are identical. Similar to a conventional two‐step method, the simple one‐step sol dipping method leads to homogeneous distribution of active phase and hence to greater o‐xylene combustion activity, compared with the one‐step solution impregnation method. Furthermore, the one‐step sol dipping method results in the strongest adhesion and cohesion of catalytic material on to the monolithic substrate, followed by the one‐step solution impregnation method and then the conventional two‐step method.
CONCLUSIONS
The one‐step sol dipping method is superior to the other two methods and is therefore recommended for use in the future preparation of monolithic catalysts, especially for mass production of monolithic catalysts in industry. © 2013 Society of Chemical Industry</description><identifier>ISSN: 0268-2575</identifier><identifier>EISSN: 1097-4660</identifier><identifier>DOI: 10.1002/jctb.4239</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>active phase distribution ; Catalysts ; catalytic combustion ; Combustion ; Copper ; Cordierite ; Dipping ; Impregnation ; Mass production ; mechanical stability ; monolithic catalyst ; Phases ; preparation method ; Production methods</subject><ispartof>Journal of chemical technology and biotechnology (1986), 2014-10, Vol.89 (10), p.1559-1564</ispartof><rights>2013 Society of Chemical Industry</rights><rights>2014 Society of Chemical Industry</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5419-65594b7d36ad7670dff70634a1be32611b96333fd84460a9d979bfad459928a43</citedby><cites>FETCH-LOGICAL-c5419-65594b7d36ad7670dff70634a1be32611b96333fd84460a9d979bfad459928a43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjctb.4239$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjctb.4239$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Wu, Dongfang</creatorcontrib><creatorcontrib>Li, Wangbing</creatorcontrib><creatorcontrib>Gao, Rui</creatorcontrib><title>Comparison of the methods for preparing a cordierite monolith-supported Cu-Mn mixed-oxide catalyst</title><title>Journal of chemical technology and biotechnology (1986)</title><addtitle>J. Chem. Technol. Biotechnol</addtitle><description>BACKGROUND
An efficient, quick and simple preparation method is of great importance for mass production of monolithic catalysts in industry. This paper reports a comparison of three methods used to prepare a monolithic Cu–Mn mixed‐oxide/γ‐alumina/cordierite catalyst.
RESULTS
The catalysts obtained by different methods have significant differences in catalytic activity and mechanical stability, although their chemical crystalline phases are identical. Similar to a conventional two‐step method, the simple one‐step sol dipping method leads to homogeneous distribution of active phase and hence to greater o‐xylene combustion activity, compared with the one‐step solution impregnation method. Furthermore, the one‐step sol dipping method results in the strongest adhesion and cohesion of catalytic material on to the monolithic substrate, followed by the one‐step solution impregnation method and then the conventional two‐step method.
CONCLUSIONS
The one‐step sol dipping method is superior to the other two methods and is therefore recommended for use in the future preparation of monolithic catalysts, especially for mass production of monolithic catalysts in industry. © 2013 Society of Chemical Industry</description><subject>active phase distribution</subject><subject>Catalysts</subject><subject>catalytic combustion</subject><subject>Combustion</subject><subject>Copper</subject><subject>Cordierite</subject><subject>Dipping</subject><subject>Impregnation</subject><subject>Mass production</subject><subject>mechanical stability</subject><subject>monolithic catalyst</subject><subject>Phases</subject><subject>preparation method</subject><subject>Production methods</subject><issn>0268-2575</issn><issn>1097-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqN0U9vFCEYBnDSaNJt9dBvQOLFHmj5NzAc7cRWm1UTU_VImIHpss4MIzBx99vLZhsPTUy88B74PYQ3DwAXBF8RjOn1tsvtFadMnYAVwUoiLgR-AVaYihrRSlan4CylLcZY1FSsQNuEcTbRpzDB0MO8cXB0eRNsgn2IcI7ucDs9QgO7EK130edCwhQGnzcoLfMcYnYWNgv6NMHR75xFYeetg53JZtin_Aq87M2Q3OuneQ6-3b5_aD6g9Ze7j827NeoqThQSVaV4Ky0Txkohse17iQXjhrSOUUFIqwRjrLc15wIbZZVUbW8sr5SiteHsHLw9vjvH8GtxKevRp84Ng5lcWJImQkrFqRLyP6goXyqHKvTNM7oNS5zKIkVVqsY14aKoy6PqYkgpul7P0Y8m7jXB-lCMPhSjD8UUe320v_3g9v-G-r55uHlKoGPCp-x2fxMm_tRlGVnpH5_v9Pe1ouSe3Oqv7A9Ovp39</recordid><startdate>201410</startdate><enddate>201410</enddate><creator>Wu, Dongfang</creator><creator>Li, Wangbing</creator><creator>Gao, Rui</creator><general>John Wiley & Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope></search><sort><creationdate>201410</creationdate><title>Comparison of the methods for preparing a cordierite monolith-supported Cu-Mn mixed-oxide catalyst</title><author>Wu, Dongfang ; Li, Wangbing ; Gao, Rui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5419-65594b7d36ad7670dff70634a1be32611b96333fd84460a9d979bfad459928a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>active phase distribution</topic><topic>Catalysts</topic><topic>catalytic combustion</topic><topic>Combustion</topic><topic>Copper</topic><topic>Cordierite</topic><topic>Dipping</topic><topic>Impregnation</topic><topic>Mass production</topic><topic>mechanical stability</topic><topic>monolithic catalyst</topic><topic>Phases</topic><topic>preparation method</topic><topic>Production methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Dongfang</creatorcontrib><creatorcontrib>Li, Wangbing</creatorcontrib><creatorcontrib>Gao, Rui</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Journal of chemical technology and biotechnology (1986)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Dongfang</au><au>Li, Wangbing</au><au>Gao, Rui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of the methods for preparing a cordierite monolith-supported Cu-Mn mixed-oxide catalyst</atitle><jtitle>Journal of chemical technology and biotechnology (1986)</jtitle><addtitle>J. Chem. Technol. Biotechnol</addtitle><date>2014-10</date><risdate>2014</risdate><volume>89</volume><issue>10</issue><spage>1559</spage><epage>1564</epage><pages>1559-1564</pages><issn>0268-2575</issn><eissn>1097-4660</eissn><abstract>BACKGROUND
An efficient, quick and simple preparation method is of great importance for mass production of monolithic catalysts in industry. This paper reports a comparison of three methods used to prepare a monolithic Cu–Mn mixed‐oxide/γ‐alumina/cordierite catalyst.
RESULTS
The catalysts obtained by different methods have significant differences in catalytic activity and mechanical stability, although their chemical crystalline phases are identical. Similar to a conventional two‐step method, the simple one‐step sol dipping method leads to homogeneous distribution of active phase and hence to greater o‐xylene combustion activity, compared with the one‐step solution impregnation method. Furthermore, the one‐step sol dipping method results in the strongest adhesion and cohesion of catalytic material on to the monolithic substrate, followed by the one‐step solution impregnation method and then the conventional two‐step method.
CONCLUSIONS
The one‐step sol dipping method is superior to the other two methods and is therefore recommended for use in the future preparation of monolithic catalysts, especially for mass production of monolithic catalysts in industry. © 2013 Society of Chemical Industry</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/jctb.4239</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0268-2575 |
ispartof | Journal of chemical technology and biotechnology (1986), 2014-10, Vol.89 (10), p.1559-1564 |
issn | 0268-2575 1097-4660 |
language | eng |
recordid | cdi_proquest_miscellaneous_1677942967 |
source | Wiley Journals |
subjects | active phase distribution Catalysts catalytic combustion Combustion Copper Cordierite Dipping Impregnation Mass production mechanical stability monolithic catalyst Phases preparation method Production methods |
title | Comparison of the methods for preparing a cordierite monolith-supported Cu-Mn mixed-oxide catalyst |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T22%3A26%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20the%20methods%20for%20preparing%20a%20cordierite%20monolith-supported%20Cu-Mn%20mixed-oxide%20catalyst&rft.jtitle=Journal%20of%20chemical%20technology%20and%20biotechnology%20(1986)&rft.au=Wu,%20Dongfang&rft.date=2014-10&rft.volume=89&rft.issue=10&rft.spage=1559&rft.epage=1564&rft.pages=1559-1564&rft.issn=0268-2575&rft.eissn=1097-4660&rft_id=info:doi/10.1002/jctb.4239&rft_dat=%3Cproquest_cross%3E1664196649%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1659808146&rft_id=info:pmid/&rfr_iscdi=true |