Comparison of the methods for preparing a cordierite monolith-supported Cu-Mn mixed-oxide catalyst

BACKGROUND An efficient, quick and simple preparation method is of great importance for mass production of monolithic catalysts in industry. This paper reports a comparison of three methods used to prepare a monolithic Cu–Mn mixed‐oxide/γ‐alumina/cordierite catalyst. RESULTS The catalysts obtained b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical technology and biotechnology (1986) 2014-10, Vol.89 (10), p.1559-1564
Hauptverfasser: Wu, Dongfang, Li, Wangbing, Gao, Rui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1564
container_issue 10
container_start_page 1559
container_title Journal of chemical technology and biotechnology (1986)
container_volume 89
creator Wu, Dongfang
Li, Wangbing
Gao, Rui
description BACKGROUND An efficient, quick and simple preparation method is of great importance for mass production of monolithic catalysts in industry. This paper reports a comparison of three methods used to prepare a monolithic Cu–Mn mixed‐oxide/γ‐alumina/cordierite catalyst. RESULTS The catalysts obtained by different methods have significant differences in catalytic activity and mechanical stability, although their chemical crystalline phases are identical. Similar to a conventional two‐step method, the simple one‐step sol dipping method leads to homogeneous distribution of active phase and hence to greater o‐xylene combustion activity, compared with the one‐step solution impregnation method. Furthermore, the one‐step sol dipping method results in the strongest adhesion and cohesion of catalytic material on to the monolithic substrate, followed by the one‐step solution impregnation method and then the conventional two‐step method. CONCLUSIONS The one‐step sol dipping method is superior to the other two methods and is therefore recommended for use in the future preparation of monolithic catalysts, especially for mass production of monolithic catalysts in industry. © 2013 Society of Chemical Industry
doi_str_mv 10.1002/jctb.4239
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677942967</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1664196649</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5419-65594b7d36ad7670dff70634a1be32611b96333fd84460a9d979bfad459928a43</originalsourceid><addsrcrecordid>eNqN0U9vFCEYBnDSaNJt9dBvQOLFHmj5NzAc7cRWm1UTU_VImIHpss4MIzBx99vLZhsPTUy88B74PYQ3DwAXBF8RjOn1tsvtFadMnYAVwUoiLgR-AVaYihrRSlan4CylLcZY1FSsQNuEcTbRpzDB0MO8cXB0eRNsgn2IcI7ucDs9QgO7EK130edCwhQGnzcoLfMcYnYWNgv6NMHR75xFYeetg53JZtin_Aq87M2Q3OuneQ6-3b5_aD6g9Ze7j827NeoqThQSVaV4Ky0Txkohse17iQXjhrSOUUFIqwRjrLc15wIbZZVUbW8sr5SiteHsHLw9vjvH8GtxKevRp84Ng5lcWJImQkrFqRLyP6goXyqHKvTNM7oNS5zKIkVVqsY14aKoy6PqYkgpul7P0Y8m7jXB-lCMPhSjD8UUe320v_3g9v-G-r55uHlKoGPCp-x2fxMm_tRlGVnpH5_v9Pe1ouSe3Oqv7A9Ovp39</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1659808146</pqid></control><display><type>article</type><title>Comparison of the methods for preparing a cordierite monolith-supported Cu-Mn mixed-oxide catalyst</title><source>Wiley Journals</source><creator>Wu, Dongfang ; Li, Wangbing ; Gao, Rui</creator><creatorcontrib>Wu, Dongfang ; Li, Wangbing ; Gao, Rui</creatorcontrib><description>BACKGROUND An efficient, quick and simple preparation method is of great importance for mass production of monolithic catalysts in industry. This paper reports a comparison of three methods used to prepare a monolithic Cu–Mn mixed‐oxide/γ‐alumina/cordierite catalyst. RESULTS The catalysts obtained by different methods have significant differences in catalytic activity and mechanical stability, although their chemical crystalline phases are identical. Similar to a conventional two‐step method, the simple one‐step sol dipping method leads to homogeneous distribution of active phase and hence to greater o‐xylene combustion activity, compared with the one‐step solution impregnation method. Furthermore, the one‐step sol dipping method results in the strongest adhesion and cohesion of catalytic material on to the monolithic substrate, followed by the one‐step solution impregnation method and then the conventional two‐step method. CONCLUSIONS The one‐step sol dipping method is superior to the other two methods and is therefore recommended for use in the future preparation of monolithic catalysts, especially for mass production of monolithic catalysts in industry. © 2013 Society of Chemical Industry</description><identifier>ISSN: 0268-2575</identifier><identifier>EISSN: 1097-4660</identifier><identifier>DOI: 10.1002/jctb.4239</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>active phase distribution ; Catalysts ; catalytic combustion ; Combustion ; Copper ; Cordierite ; Dipping ; Impregnation ; Mass production ; mechanical stability ; monolithic catalyst ; Phases ; preparation method ; Production methods</subject><ispartof>Journal of chemical technology and biotechnology (1986), 2014-10, Vol.89 (10), p.1559-1564</ispartof><rights>2013 Society of Chemical Industry</rights><rights>2014 Society of Chemical Industry</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5419-65594b7d36ad7670dff70634a1be32611b96333fd84460a9d979bfad459928a43</citedby><cites>FETCH-LOGICAL-c5419-65594b7d36ad7670dff70634a1be32611b96333fd84460a9d979bfad459928a43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjctb.4239$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjctb.4239$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Wu, Dongfang</creatorcontrib><creatorcontrib>Li, Wangbing</creatorcontrib><creatorcontrib>Gao, Rui</creatorcontrib><title>Comparison of the methods for preparing a cordierite monolith-supported Cu-Mn mixed-oxide catalyst</title><title>Journal of chemical technology and biotechnology (1986)</title><addtitle>J. Chem. Technol. Biotechnol</addtitle><description>BACKGROUND An efficient, quick and simple preparation method is of great importance for mass production of monolithic catalysts in industry. This paper reports a comparison of three methods used to prepare a monolithic Cu–Mn mixed‐oxide/γ‐alumina/cordierite catalyst. RESULTS The catalysts obtained by different methods have significant differences in catalytic activity and mechanical stability, although their chemical crystalline phases are identical. Similar to a conventional two‐step method, the simple one‐step sol dipping method leads to homogeneous distribution of active phase and hence to greater o‐xylene combustion activity, compared with the one‐step solution impregnation method. Furthermore, the one‐step sol dipping method results in the strongest adhesion and cohesion of catalytic material on to the monolithic substrate, followed by the one‐step solution impregnation method and then the conventional two‐step method. CONCLUSIONS The one‐step sol dipping method is superior to the other two methods and is therefore recommended for use in the future preparation of monolithic catalysts, especially for mass production of monolithic catalysts in industry. © 2013 Society of Chemical Industry</description><subject>active phase distribution</subject><subject>Catalysts</subject><subject>catalytic combustion</subject><subject>Combustion</subject><subject>Copper</subject><subject>Cordierite</subject><subject>Dipping</subject><subject>Impregnation</subject><subject>Mass production</subject><subject>mechanical stability</subject><subject>monolithic catalyst</subject><subject>Phases</subject><subject>preparation method</subject><subject>Production methods</subject><issn>0268-2575</issn><issn>1097-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqN0U9vFCEYBnDSaNJt9dBvQOLFHmj5NzAc7cRWm1UTU_VImIHpss4MIzBx99vLZhsPTUy88B74PYQ3DwAXBF8RjOn1tsvtFadMnYAVwUoiLgR-AVaYihrRSlan4CylLcZY1FSsQNuEcTbRpzDB0MO8cXB0eRNsgn2IcI7ucDs9QgO7EK130edCwhQGnzcoLfMcYnYWNgv6NMHR75xFYeetg53JZtin_Aq87M2Q3OuneQ6-3b5_aD6g9Ze7j827NeoqThQSVaV4Ky0Txkohse17iQXjhrSOUUFIqwRjrLc15wIbZZVUbW8sr5SiteHsHLw9vjvH8GtxKevRp84Ng5lcWJImQkrFqRLyP6goXyqHKvTNM7oNS5zKIkVVqsY14aKoy6PqYkgpul7P0Y8m7jXB-lCMPhSjD8UUe320v_3g9v-G-r55uHlKoGPCp-x2fxMm_tRlGVnpH5_v9Pe1ouSe3Oqv7A9Ovp39</recordid><startdate>201410</startdate><enddate>201410</enddate><creator>Wu, Dongfang</creator><creator>Li, Wangbing</creator><creator>Gao, Rui</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope></search><sort><creationdate>201410</creationdate><title>Comparison of the methods for preparing a cordierite monolith-supported Cu-Mn mixed-oxide catalyst</title><author>Wu, Dongfang ; Li, Wangbing ; Gao, Rui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5419-65594b7d36ad7670dff70634a1be32611b96333fd84460a9d979bfad459928a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>active phase distribution</topic><topic>Catalysts</topic><topic>catalytic combustion</topic><topic>Combustion</topic><topic>Copper</topic><topic>Cordierite</topic><topic>Dipping</topic><topic>Impregnation</topic><topic>Mass production</topic><topic>mechanical stability</topic><topic>monolithic catalyst</topic><topic>Phases</topic><topic>preparation method</topic><topic>Production methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Dongfang</creatorcontrib><creatorcontrib>Li, Wangbing</creatorcontrib><creatorcontrib>Gao, Rui</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Journal of chemical technology and biotechnology (1986)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Dongfang</au><au>Li, Wangbing</au><au>Gao, Rui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of the methods for preparing a cordierite monolith-supported Cu-Mn mixed-oxide catalyst</atitle><jtitle>Journal of chemical technology and biotechnology (1986)</jtitle><addtitle>J. Chem. Technol. Biotechnol</addtitle><date>2014-10</date><risdate>2014</risdate><volume>89</volume><issue>10</issue><spage>1559</spage><epage>1564</epage><pages>1559-1564</pages><issn>0268-2575</issn><eissn>1097-4660</eissn><abstract>BACKGROUND An efficient, quick and simple preparation method is of great importance for mass production of monolithic catalysts in industry. This paper reports a comparison of three methods used to prepare a monolithic Cu–Mn mixed‐oxide/γ‐alumina/cordierite catalyst. RESULTS The catalysts obtained by different methods have significant differences in catalytic activity and mechanical stability, although their chemical crystalline phases are identical. Similar to a conventional two‐step method, the simple one‐step sol dipping method leads to homogeneous distribution of active phase and hence to greater o‐xylene combustion activity, compared with the one‐step solution impregnation method. Furthermore, the one‐step sol dipping method results in the strongest adhesion and cohesion of catalytic material on to the monolithic substrate, followed by the one‐step solution impregnation method and then the conventional two‐step method. CONCLUSIONS The one‐step sol dipping method is superior to the other two methods and is therefore recommended for use in the future preparation of monolithic catalysts, especially for mass production of monolithic catalysts in industry. © 2013 Society of Chemical Industry</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/jctb.4239</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0268-2575
ispartof Journal of chemical technology and biotechnology (1986), 2014-10, Vol.89 (10), p.1559-1564
issn 0268-2575
1097-4660
language eng
recordid cdi_proquest_miscellaneous_1677942967
source Wiley Journals
subjects active phase distribution
Catalysts
catalytic combustion
Combustion
Copper
Cordierite
Dipping
Impregnation
Mass production
mechanical stability
monolithic catalyst
Phases
preparation method
Production methods
title Comparison of the methods for preparing a cordierite monolith-supported Cu-Mn mixed-oxide catalyst
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T22%3A26%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20the%20methods%20for%20preparing%20a%20cordierite%20monolith-supported%20Cu-Mn%20mixed-oxide%20catalyst&rft.jtitle=Journal%20of%20chemical%20technology%20and%20biotechnology%20(1986)&rft.au=Wu,%20Dongfang&rft.date=2014-10&rft.volume=89&rft.issue=10&rft.spage=1559&rft.epage=1564&rft.pages=1559-1564&rft.issn=0268-2575&rft.eissn=1097-4660&rft_id=info:doi/10.1002/jctb.4239&rft_dat=%3Cproquest_cross%3E1664196649%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1659808146&rft_id=info:pmid/&rfr_iscdi=true