Stochastic model construction of observed random phenomena

A method for constructing probabilistic models of non-stationary time dependent natural hazards is proposed. It is based on the use of Karhunen–Loève expansion and of a kernel estimator for the distribution of the multivariate random variables appearing in the expansion. The terms of the expansion a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Probabilistic engineering mechanics 2014-04, Vol.36, p.63-71
Hauptverfasser: Poirion, Fabrice, Zentner, Irmela
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 71
container_issue
container_start_page 63
container_title Probabilistic engineering mechanics
container_volume 36
creator Poirion, Fabrice
Zentner, Irmela
description A method for constructing probabilistic models of non-stationary time dependent natural hazards is proposed. It is based on the use of Karhunen–Loève expansion and of a kernel estimator for the distribution of the multivariate random variables appearing in the expansion. The terms of the expansion and the distribution are identified from available measures. The approach is assessed through an academic example and is then applied to seismic ground motion modelling based on recorded data. •A stochastic model for non-Gaussian and nonstationary random phenomena is proposed.•No a priori assumptions are introduced in the model.•The model probability distribution is derived explicitly.•The model is applied for the construction of seismic acceleration models.
doi_str_mv 10.1016/j.probengmech.2014.03.005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677941808</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0266892014000198</els_id><sourcerecordid>1677941808</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-dc0eaa81f91fdfef2e00e52e9f83d5b41772e2b42e35a290ed3cf73c7728de7b3</originalsourceid><addsrcrecordid>eNqNkEtLxDAUhYMoOD7-Q925ab1J2kniTgZfMOBCXYc0uXE6tMmYdAb893YYF-50deHynQPnI-SKQkWBzm_W1SbFFsPHgHZVMaB1BbwCaI7IjEohy5qJ5pjMgM3npVQMTslZzmsAKmitZuT2dYx2ZfLY2WKIDvvCxpDHtLVjF0MRfRHbjGmHrkgmuDgUmxWGOGAwF-TEmz7j5c89J-8P92-Lp3L58vi8uFuWlksxls4CGiOpV9Q7j54hADYMlZfcNW1NhWDI2pohbwxTgI5bL7id3tKhaPk5uT70Tks_t5hHPXTZYt-bgHGbNZ0LoWoqQf6NNo0SVLCGT6g6oDbFnBN6vUndYNKXpqD3avVa_1Kr92o1cD2pnbKLQxan2bsOk862w2DRdQntqF3s_tHyDTT_iQw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1559717253</pqid></control><display><type>article</type><title>Stochastic model construction of observed random phenomena</title><source>Elsevier ScienceDirect Journals</source><creator>Poirion, Fabrice ; Zentner, Irmela</creator><creatorcontrib>Poirion, Fabrice ; Zentner, Irmela</creatorcontrib><description>A method for constructing probabilistic models of non-stationary time dependent natural hazards is proposed. It is based on the use of Karhunen–Loève expansion and of a kernel estimator for the distribution of the multivariate random variables appearing in the expansion. The terms of the expansion and the distribution are identified from available measures. The approach is assessed through an academic example and is then applied to seismic ground motion modelling based on recorded data. •A stochastic model for non-Gaussian and nonstationary random phenomena is proposed.•No a priori assumptions are introduced in the model.•The model probability distribution is derived explicitly.•The model is applied for the construction of seismic acceleration models.</description><identifier>ISSN: 0266-8920</identifier><identifier>EISSN: 1878-4275</identifier><identifier>DOI: 10.1016/j.probengmech.2014.03.005</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Construction ; Estimators ; Ground motion ; Identification ; Kernel estimator ; Kernels ; Non-Gaussian process ; Non-stationary process ; Principal component analysis ; Probabilistic methods ; Probability theory ; Random variables ; Simulation</subject><ispartof>Probabilistic engineering mechanics, 2014-04, Vol.36, p.63-71</ispartof><rights>2014 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-dc0eaa81f91fdfef2e00e52e9f83d5b41772e2b42e35a290ed3cf73c7728de7b3</citedby><cites>FETCH-LOGICAL-c387t-dc0eaa81f91fdfef2e00e52e9f83d5b41772e2b42e35a290ed3cf73c7728de7b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0266892014000198$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Poirion, Fabrice</creatorcontrib><creatorcontrib>Zentner, Irmela</creatorcontrib><title>Stochastic model construction of observed random phenomena</title><title>Probabilistic engineering mechanics</title><description>A method for constructing probabilistic models of non-stationary time dependent natural hazards is proposed. It is based on the use of Karhunen–Loève expansion and of a kernel estimator for the distribution of the multivariate random variables appearing in the expansion. The terms of the expansion and the distribution are identified from available measures. The approach is assessed through an academic example and is then applied to seismic ground motion modelling based on recorded data. •A stochastic model for non-Gaussian and nonstationary random phenomena is proposed.•No a priori assumptions are introduced in the model.•The model probability distribution is derived explicitly.•The model is applied for the construction of seismic acceleration models.</description><subject>Construction</subject><subject>Estimators</subject><subject>Ground motion</subject><subject>Identification</subject><subject>Kernel estimator</subject><subject>Kernels</subject><subject>Non-Gaussian process</subject><subject>Non-stationary process</subject><subject>Principal component analysis</subject><subject>Probabilistic methods</subject><subject>Probability theory</subject><subject>Random variables</subject><subject>Simulation</subject><issn>0266-8920</issn><issn>1878-4275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkEtLxDAUhYMoOD7-Q925ab1J2kniTgZfMOBCXYc0uXE6tMmYdAb893YYF-50deHynQPnI-SKQkWBzm_W1SbFFsPHgHZVMaB1BbwCaI7IjEohy5qJ5pjMgM3npVQMTslZzmsAKmitZuT2dYx2ZfLY2WKIDvvCxpDHtLVjF0MRfRHbjGmHrkgmuDgUmxWGOGAwF-TEmz7j5c89J-8P92-Lp3L58vi8uFuWlksxls4CGiOpV9Q7j54hADYMlZfcNW1NhWDI2pohbwxTgI5bL7id3tKhaPk5uT70Tks_t5hHPXTZYt-bgHGbNZ0LoWoqQf6NNo0SVLCGT6g6oDbFnBN6vUndYNKXpqD3avVa_1Kr92o1cD2pnbKLQxan2bsOk862w2DRdQntqF3s_tHyDTT_iQw</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Poirion, Fabrice</creator><creator>Zentner, Irmela</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140401</creationdate><title>Stochastic model construction of observed random phenomena</title><author>Poirion, Fabrice ; Zentner, Irmela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-dc0eaa81f91fdfef2e00e52e9f83d5b41772e2b42e35a290ed3cf73c7728de7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Construction</topic><topic>Estimators</topic><topic>Ground motion</topic><topic>Identification</topic><topic>Kernel estimator</topic><topic>Kernels</topic><topic>Non-Gaussian process</topic><topic>Non-stationary process</topic><topic>Principal component analysis</topic><topic>Probabilistic methods</topic><topic>Probability theory</topic><topic>Random variables</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Poirion, Fabrice</creatorcontrib><creatorcontrib>Zentner, Irmela</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Probabilistic engineering mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Poirion, Fabrice</au><au>Zentner, Irmela</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stochastic model construction of observed random phenomena</atitle><jtitle>Probabilistic engineering mechanics</jtitle><date>2014-04-01</date><risdate>2014</risdate><volume>36</volume><spage>63</spage><epage>71</epage><pages>63-71</pages><issn>0266-8920</issn><eissn>1878-4275</eissn><abstract>A method for constructing probabilistic models of non-stationary time dependent natural hazards is proposed. It is based on the use of Karhunen–Loève expansion and of a kernel estimator for the distribution of the multivariate random variables appearing in the expansion. The terms of the expansion and the distribution are identified from available measures. The approach is assessed through an academic example and is then applied to seismic ground motion modelling based on recorded data. •A stochastic model for non-Gaussian and nonstationary random phenomena is proposed.•No a priori assumptions are introduced in the model.•The model probability distribution is derived explicitly.•The model is applied for the construction of seismic acceleration models.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.probengmech.2014.03.005</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0266-8920
ispartof Probabilistic engineering mechanics, 2014-04, Vol.36, p.63-71
issn 0266-8920
1878-4275
language eng
recordid cdi_proquest_miscellaneous_1677941808
source Elsevier ScienceDirect Journals
subjects Construction
Estimators
Ground motion
Identification
Kernel estimator
Kernels
Non-Gaussian process
Non-stationary process
Principal component analysis
Probabilistic methods
Probability theory
Random variables
Simulation
title Stochastic model construction of observed random phenomena
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A59%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stochastic%20model%20construction%20of%20observed%20random%20phenomena&rft.jtitle=Probabilistic%20engineering%20mechanics&rft.au=Poirion,%20Fabrice&rft.date=2014-04-01&rft.volume=36&rft.spage=63&rft.epage=71&rft.pages=63-71&rft.issn=0266-8920&rft.eissn=1878-4275&rft_id=info:doi/10.1016/j.probengmech.2014.03.005&rft_dat=%3Cproquest_cross%3E1677941808%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1559717253&rft_id=info:pmid/&rft_els_id=S0266892014000198&rfr_iscdi=true