Initial wash profiles from a ship propeller using CFD method

The present paper was aimed at presenting the time-averaged velocity and turbulence intensity at the initial plane from a ship′s propeller using a Computational Fluid Dynamics (CFD) approach. Previous experimental studies found that the maximum velocity occurred at the initial plane within a jet, bu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ocean engineering 2013-11, Vol.72, p.257-266
Hauptverfasser: Lam, W.H., Hamill, G.A., Robinson, D.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 266
container_issue
container_start_page 257
container_title Ocean engineering
container_volume 72
creator Lam, W.H.
Hamill, G.A.
Robinson, D.J.
description The present paper was aimed at presenting the time-averaged velocity and turbulence intensity at the initial plane from a ship′s propeller using a Computational Fluid Dynamics (CFD) approach. Previous experimental studies found that the maximum velocity occurred at the initial plane within a jet, but no agreement was found with regards to the position of this maximum velocity and the velocity distribution across the initial plane. All work to date has been empirical in nature and new approaches are required to provide a better understanding of the flow field. The current investigation was conducted using a Computational Fluid Dynamics (CFD) approach, and found the position of the maximum velocity occurred at a distance of 0.585Rp from the rotation axis. The CFD prediction showed that the axial component of velocity is the main contributor to the velocity magnitude, followed by the tangential and radial velocities which are 78% and 3% of the maximum axial velocity respectively. The axial velocity distribution across the section showed a two-peaked-ridge profile with a low velocity core at the rotation axis. •Provides CFD method to investigate time-averaged velocity and turbulence intensity within a ship propeller jet.•Contains axial, tangential and radial components within the jet.•Presents the profiles of turbulence kinetic energy and vorticity of the jet.
doi_str_mv 10.1016/j.oceaneng.2013.07.010
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677938993</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0029801813002989</els_id><sourcerecordid>1668253372</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-b64bf0d1259b0a24c69d8571c0adc1e85efcf15390c6f25a28151e68af1c7f703</originalsourceid><addsrcrecordid>eNqNkE1LAzEQhoMoWKt_QfYieNl1kjQfCx6UarVQ8KLnkGYnbcp2tyZbxX_vllavehoYnnc-HkIuKRQUqLxZFa1D22CzKBhQXoAqgMIRGVCteC6Y0MdkAMDKXAPVp-QspRUASAl8QG6nTeiCrbNPm5bZJrY-1JgyH9t1ZrO0DJtdc4N1jTHbptAssvHkIVtjt2yrc3LibZ3w4lCH5G3y-Dp-zmcvT9Px_Sx3I9BdPpejuYeKMlHOwbKRk2WlhaIObOUoaoHeeSp4CU56JizTVFCU2nrqlFfAh-R6P7c_5X2LqTPrkFx_U_91u02GSqVKrsuS_wOVmgnOFetRuUddbFOK6M0mhrWNX4aC2Zk1K_Nj1uzMGlCmN9sHrw47bHK29tE2LqTfNFNqVDIpeu5uz2Hv5iNgNMkFbBxWIaLrTNWGv1Z9A_KSkKI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1668253372</pqid></control><display><type>article</type><title>Initial wash profiles from a ship propeller using CFD method</title><source>Access via ScienceDirect (Elsevier)</source><creator>Lam, W.H. ; Hamill, G.A. ; Robinson, D.J.</creator><creatorcontrib>Lam, W.H. ; Hamill, G.A. ; Robinson, D.J.</creatorcontrib><description>The present paper was aimed at presenting the time-averaged velocity and turbulence intensity at the initial plane from a ship′s propeller using a Computational Fluid Dynamics (CFD) approach. Previous experimental studies found that the maximum velocity occurred at the initial plane within a jet, but no agreement was found with regards to the position of this maximum velocity and the velocity distribution across the initial plane. All work to date has been empirical in nature and new approaches are required to provide a better understanding of the flow field. The current investigation was conducted using a Computational Fluid Dynamics (CFD) approach, and found the position of the maximum velocity occurred at a distance of 0.585Rp from the rotation axis. The CFD prediction showed that the axial component of velocity is the main contributor to the velocity magnitude, followed by the tangential and radial velocities which are 78% and 3% of the maximum axial velocity respectively. The axial velocity distribution across the section showed a two-peaked-ridge profile with a low velocity core at the rotation axis. •Provides CFD method to investigate time-averaged velocity and turbulence intensity within a ship propeller jet.•Contains axial, tangential and radial components within the jet.•Presents the profiles of turbulence kinetic energy and vorticity of the jet.</description><identifier>ISSN: 0029-8018</identifier><identifier>EISSN: 1873-5258</identifier><identifier>DOI: 10.1016/j.oceaneng.2013.07.010</identifier><identifier>CODEN: OCENBQ</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied fluid mechanics ; Applied sciences ; Computational fluid dynamics ; Computational fluid dynamics (CFD) ; Empirical analysis ; Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Ground, air and sea transportation, marine construction ; Hydrodynamics, hydraulics, hydrostatics ; Laser Doppler anemometry (LDA) ; Marine construction ; Mathematical models ; Ocean engineering ; Physics ; Planes ; Propellers ; Radial velocity ; Ship′s propeller jet ; Turbulence intensity ; Velocity distribution</subject><ispartof>Ocean engineering, 2013-11, Vol.72, p.257-266</ispartof><rights>2013 Elsevier Ltd</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-b64bf0d1259b0a24c69d8571c0adc1e85efcf15390c6f25a28151e68af1c7f703</citedby><cites>FETCH-LOGICAL-c408t-b64bf0d1259b0a24c69d8571c0adc1e85efcf15390c6f25a28151e68af1c7f703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.oceaneng.2013.07.010$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27749265$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lam, W.H.</creatorcontrib><creatorcontrib>Hamill, G.A.</creatorcontrib><creatorcontrib>Robinson, D.J.</creatorcontrib><title>Initial wash profiles from a ship propeller using CFD method</title><title>Ocean engineering</title><description>The present paper was aimed at presenting the time-averaged velocity and turbulence intensity at the initial plane from a ship′s propeller using a Computational Fluid Dynamics (CFD) approach. Previous experimental studies found that the maximum velocity occurred at the initial plane within a jet, but no agreement was found with regards to the position of this maximum velocity and the velocity distribution across the initial plane. All work to date has been empirical in nature and new approaches are required to provide a better understanding of the flow field. The current investigation was conducted using a Computational Fluid Dynamics (CFD) approach, and found the position of the maximum velocity occurred at a distance of 0.585Rp from the rotation axis. The CFD prediction showed that the axial component of velocity is the main contributor to the velocity magnitude, followed by the tangential and radial velocities which are 78% and 3% of the maximum axial velocity respectively. The axial velocity distribution across the section showed a two-peaked-ridge profile with a low velocity core at the rotation axis. •Provides CFD method to investigate time-averaged velocity and turbulence intensity within a ship propeller jet.•Contains axial, tangential and radial components within the jet.•Presents the profiles of turbulence kinetic energy and vorticity of the jet.</description><subject>Applied fluid mechanics</subject><subject>Applied sciences</subject><subject>Computational fluid dynamics</subject><subject>Computational fluid dynamics (CFD)</subject><subject>Empirical analysis</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Ground, air and sea transportation, marine construction</subject><subject>Hydrodynamics, hydraulics, hydrostatics</subject><subject>Laser Doppler anemometry (LDA)</subject><subject>Marine construction</subject><subject>Mathematical models</subject><subject>Ocean engineering</subject><subject>Physics</subject><subject>Planes</subject><subject>Propellers</subject><subject>Radial velocity</subject><subject>Ship′s propeller jet</subject><subject>Turbulence intensity</subject><subject>Velocity distribution</subject><issn>0029-8018</issn><issn>1873-5258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkE1LAzEQhoMoWKt_QfYieNl1kjQfCx6UarVQ8KLnkGYnbcp2tyZbxX_vllavehoYnnc-HkIuKRQUqLxZFa1D22CzKBhQXoAqgMIRGVCteC6Y0MdkAMDKXAPVp-QspRUASAl8QG6nTeiCrbNPm5bZJrY-1JgyH9t1ZrO0DJtdc4N1jTHbptAssvHkIVtjt2yrc3LibZ3w4lCH5G3y-Dp-zmcvT9Px_Sx3I9BdPpejuYeKMlHOwbKRk2WlhaIObOUoaoHeeSp4CU56JizTVFCU2nrqlFfAh-R6P7c_5X2LqTPrkFx_U_91u02GSqVKrsuS_wOVmgnOFetRuUddbFOK6M0mhrWNX4aC2Zk1K_Nj1uzMGlCmN9sHrw47bHK29tE2LqTfNFNqVDIpeu5uz2Hv5iNgNMkFbBxWIaLrTNWGv1Z9A_KSkKI</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Lam, W.H.</creator><creator>Hamill, G.A.</creator><creator>Robinson, D.J.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20131101</creationdate><title>Initial wash profiles from a ship propeller using CFD method</title><author>Lam, W.H. ; Hamill, G.A. ; Robinson, D.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-b64bf0d1259b0a24c69d8571c0adc1e85efcf15390c6f25a28151e68af1c7f703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied fluid mechanics</topic><topic>Applied sciences</topic><topic>Computational fluid dynamics</topic><topic>Computational fluid dynamics (CFD)</topic><topic>Empirical analysis</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Ground, air and sea transportation, marine construction</topic><topic>Hydrodynamics, hydraulics, hydrostatics</topic><topic>Laser Doppler anemometry (LDA)</topic><topic>Marine construction</topic><topic>Mathematical models</topic><topic>Ocean engineering</topic><topic>Physics</topic><topic>Planes</topic><topic>Propellers</topic><topic>Radial velocity</topic><topic>Ship′s propeller jet</topic><topic>Turbulence intensity</topic><topic>Velocity distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lam, W.H.</creatorcontrib><creatorcontrib>Hamill, G.A.</creatorcontrib><creatorcontrib>Robinson, D.J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Ocean engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lam, W.H.</au><au>Hamill, G.A.</au><au>Robinson, D.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Initial wash profiles from a ship propeller using CFD method</atitle><jtitle>Ocean engineering</jtitle><date>2013-11-01</date><risdate>2013</risdate><volume>72</volume><spage>257</spage><epage>266</epage><pages>257-266</pages><issn>0029-8018</issn><eissn>1873-5258</eissn><coden>OCENBQ</coden><abstract>The present paper was aimed at presenting the time-averaged velocity and turbulence intensity at the initial plane from a ship′s propeller using a Computational Fluid Dynamics (CFD) approach. Previous experimental studies found that the maximum velocity occurred at the initial plane within a jet, but no agreement was found with regards to the position of this maximum velocity and the velocity distribution across the initial plane. All work to date has been empirical in nature and new approaches are required to provide a better understanding of the flow field. The current investigation was conducted using a Computational Fluid Dynamics (CFD) approach, and found the position of the maximum velocity occurred at a distance of 0.585Rp from the rotation axis. The CFD prediction showed that the axial component of velocity is the main contributor to the velocity magnitude, followed by the tangential and radial velocities which are 78% and 3% of the maximum axial velocity respectively. The axial velocity distribution across the section showed a two-peaked-ridge profile with a low velocity core at the rotation axis. •Provides CFD method to investigate time-averaged velocity and turbulence intensity within a ship propeller jet.•Contains axial, tangential and radial components within the jet.•Presents the profiles of turbulence kinetic energy and vorticity of the jet.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.oceaneng.2013.07.010</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0029-8018
ispartof Ocean engineering, 2013-11, Vol.72, p.257-266
issn 0029-8018
1873-5258
language eng
recordid cdi_proquest_miscellaneous_1677938993
source Access via ScienceDirect (Elsevier)
subjects Applied fluid mechanics
Applied sciences
Computational fluid dynamics
Computational fluid dynamics (CFD)
Empirical analysis
Exact sciences and technology
Fluid dynamics
Fundamental areas of phenomenology (including applications)
Ground, air and sea transportation, marine construction
Hydrodynamics, hydraulics, hydrostatics
Laser Doppler anemometry (LDA)
Marine construction
Mathematical models
Ocean engineering
Physics
Planes
Propellers
Radial velocity
Ship′s propeller jet
Turbulence intensity
Velocity distribution
title Initial wash profiles from a ship propeller using CFD method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T02%3A27%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Initial%20wash%20profiles%20from%20a%20ship%20propeller%20using%20CFD%20method&rft.jtitle=Ocean%20engineering&rft.au=Lam,%20W.H.&rft.date=2013-11-01&rft.volume=72&rft.spage=257&rft.epage=266&rft.pages=257-266&rft.issn=0029-8018&rft.eissn=1873-5258&rft.coden=OCENBQ&rft_id=info:doi/10.1016/j.oceaneng.2013.07.010&rft_dat=%3Cproquest_cross%3E1668253372%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1668253372&rft_id=info:pmid/&rft_els_id=S0029801813002989&rfr_iscdi=true