Initial wash profiles from a ship propeller using CFD method
The present paper was aimed at presenting the time-averaged velocity and turbulence intensity at the initial plane from a ship′s propeller using a Computational Fluid Dynamics (CFD) approach. Previous experimental studies found that the maximum velocity occurred at the initial plane within a jet, bu...
Gespeichert in:
Veröffentlicht in: | Ocean engineering 2013-11, Vol.72, p.257-266 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 266 |
---|---|
container_issue | |
container_start_page | 257 |
container_title | Ocean engineering |
container_volume | 72 |
creator | Lam, W.H. Hamill, G.A. Robinson, D.J. |
description | The present paper was aimed at presenting the time-averaged velocity and turbulence intensity at the initial plane from a ship′s propeller using a Computational Fluid Dynamics (CFD) approach. Previous experimental studies found that the maximum velocity occurred at the initial plane within a jet, but no agreement was found with regards to the position of this maximum velocity and the velocity distribution across the initial plane. All work to date has been empirical in nature and new approaches are required to provide a better understanding of the flow field. The current investigation was conducted using a Computational Fluid Dynamics (CFD) approach, and found the position of the maximum velocity occurred at a distance of 0.585Rp from the rotation axis. The CFD prediction showed that the axial component of velocity is the main contributor to the velocity magnitude, followed by the tangential and radial velocities which are 78% and 3% of the maximum axial velocity respectively. The axial velocity distribution across the section showed a two-peaked-ridge profile with a low velocity core at the rotation axis.
•Provides CFD method to investigate time-averaged velocity and turbulence intensity within a ship propeller jet.•Contains axial, tangential and radial components within the jet.•Presents the profiles of turbulence kinetic energy and vorticity of the jet. |
doi_str_mv | 10.1016/j.oceaneng.2013.07.010 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677938993</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0029801813002989</els_id><sourcerecordid>1668253372</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-b64bf0d1259b0a24c69d8571c0adc1e85efcf15390c6f25a28151e68af1c7f703</originalsourceid><addsrcrecordid>eNqNkE1LAzEQhoMoWKt_QfYieNl1kjQfCx6UarVQ8KLnkGYnbcp2tyZbxX_vllavehoYnnc-HkIuKRQUqLxZFa1D22CzKBhQXoAqgMIRGVCteC6Y0MdkAMDKXAPVp-QspRUASAl8QG6nTeiCrbNPm5bZJrY-1JgyH9t1ZrO0DJtdc4N1jTHbptAssvHkIVtjt2yrc3LibZ3w4lCH5G3y-Dp-zmcvT9Px_Sx3I9BdPpejuYeKMlHOwbKRk2WlhaIObOUoaoHeeSp4CU56JizTVFCU2nrqlFfAh-R6P7c_5X2LqTPrkFx_U_91u02GSqVKrsuS_wOVmgnOFetRuUddbFOK6M0mhrWNX4aC2Zk1K_Nj1uzMGlCmN9sHrw47bHK29tE2LqTfNFNqVDIpeu5uz2Hv5iNgNMkFbBxWIaLrTNWGv1Z9A_KSkKI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1668253372</pqid></control><display><type>article</type><title>Initial wash profiles from a ship propeller using CFD method</title><source>Access via ScienceDirect (Elsevier)</source><creator>Lam, W.H. ; Hamill, G.A. ; Robinson, D.J.</creator><creatorcontrib>Lam, W.H. ; Hamill, G.A. ; Robinson, D.J.</creatorcontrib><description>The present paper was aimed at presenting the time-averaged velocity and turbulence intensity at the initial plane from a ship′s propeller using a Computational Fluid Dynamics (CFD) approach. Previous experimental studies found that the maximum velocity occurred at the initial plane within a jet, but no agreement was found with regards to the position of this maximum velocity and the velocity distribution across the initial plane. All work to date has been empirical in nature and new approaches are required to provide a better understanding of the flow field. The current investigation was conducted using a Computational Fluid Dynamics (CFD) approach, and found the position of the maximum velocity occurred at a distance of 0.585Rp from the rotation axis. The CFD prediction showed that the axial component of velocity is the main contributor to the velocity magnitude, followed by the tangential and radial velocities which are 78% and 3% of the maximum axial velocity respectively. The axial velocity distribution across the section showed a two-peaked-ridge profile with a low velocity core at the rotation axis.
•Provides CFD method to investigate time-averaged velocity and turbulence intensity within a ship propeller jet.•Contains axial, tangential and radial components within the jet.•Presents the profiles of turbulence kinetic energy and vorticity of the jet.</description><identifier>ISSN: 0029-8018</identifier><identifier>EISSN: 1873-5258</identifier><identifier>DOI: 10.1016/j.oceaneng.2013.07.010</identifier><identifier>CODEN: OCENBQ</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied fluid mechanics ; Applied sciences ; Computational fluid dynamics ; Computational fluid dynamics (CFD) ; Empirical analysis ; Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Ground, air and sea transportation, marine construction ; Hydrodynamics, hydraulics, hydrostatics ; Laser Doppler anemometry (LDA) ; Marine construction ; Mathematical models ; Ocean engineering ; Physics ; Planes ; Propellers ; Radial velocity ; Ship′s propeller jet ; Turbulence intensity ; Velocity distribution</subject><ispartof>Ocean engineering, 2013-11, Vol.72, p.257-266</ispartof><rights>2013 Elsevier Ltd</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-b64bf0d1259b0a24c69d8571c0adc1e85efcf15390c6f25a28151e68af1c7f703</citedby><cites>FETCH-LOGICAL-c408t-b64bf0d1259b0a24c69d8571c0adc1e85efcf15390c6f25a28151e68af1c7f703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.oceaneng.2013.07.010$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27749265$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lam, W.H.</creatorcontrib><creatorcontrib>Hamill, G.A.</creatorcontrib><creatorcontrib>Robinson, D.J.</creatorcontrib><title>Initial wash profiles from a ship propeller using CFD method</title><title>Ocean engineering</title><description>The present paper was aimed at presenting the time-averaged velocity and turbulence intensity at the initial plane from a ship′s propeller using a Computational Fluid Dynamics (CFD) approach. Previous experimental studies found that the maximum velocity occurred at the initial plane within a jet, but no agreement was found with regards to the position of this maximum velocity and the velocity distribution across the initial plane. All work to date has been empirical in nature and new approaches are required to provide a better understanding of the flow field. The current investigation was conducted using a Computational Fluid Dynamics (CFD) approach, and found the position of the maximum velocity occurred at a distance of 0.585Rp from the rotation axis. The CFD prediction showed that the axial component of velocity is the main contributor to the velocity magnitude, followed by the tangential and radial velocities which are 78% and 3% of the maximum axial velocity respectively. The axial velocity distribution across the section showed a two-peaked-ridge profile with a low velocity core at the rotation axis.
•Provides CFD method to investigate time-averaged velocity and turbulence intensity within a ship propeller jet.•Contains axial, tangential and radial components within the jet.•Presents the profiles of turbulence kinetic energy and vorticity of the jet.</description><subject>Applied fluid mechanics</subject><subject>Applied sciences</subject><subject>Computational fluid dynamics</subject><subject>Computational fluid dynamics (CFD)</subject><subject>Empirical analysis</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Ground, air and sea transportation, marine construction</subject><subject>Hydrodynamics, hydraulics, hydrostatics</subject><subject>Laser Doppler anemometry (LDA)</subject><subject>Marine construction</subject><subject>Mathematical models</subject><subject>Ocean engineering</subject><subject>Physics</subject><subject>Planes</subject><subject>Propellers</subject><subject>Radial velocity</subject><subject>Ship′s propeller jet</subject><subject>Turbulence intensity</subject><subject>Velocity distribution</subject><issn>0029-8018</issn><issn>1873-5258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkE1LAzEQhoMoWKt_QfYieNl1kjQfCx6UarVQ8KLnkGYnbcp2tyZbxX_vllavehoYnnc-HkIuKRQUqLxZFa1D22CzKBhQXoAqgMIRGVCteC6Y0MdkAMDKXAPVp-QspRUASAl8QG6nTeiCrbNPm5bZJrY-1JgyH9t1ZrO0DJtdc4N1jTHbptAssvHkIVtjt2yrc3LibZ3w4lCH5G3y-Dp-zmcvT9Px_Sx3I9BdPpejuYeKMlHOwbKRk2WlhaIObOUoaoHeeSp4CU56JizTVFCU2nrqlFfAh-R6P7c_5X2LqTPrkFx_U_91u02GSqVKrsuS_wOVmgnOFetRuUddbFOK6M0mhrWNX4aC2Zk1K_Nj1uzMGlCmN9sHrw47bHK29tE2LqTfNFNqVDIpeu5uz2Hv5iNgNMkFbBxWIaLrTNWGv1Z9A_KSkKI</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Lam, W.H.</creator><creator>Hamill, G.A.</creator><creator>Robinson, D.J.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20131101</creationdate><title>Initial wash profiles from a ship propeller using CFD method</title><author>Lam, W.H. ; Hamill, G.A. ; Robinson, D.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-b64bf0d1259b0a24c69d8571c0adc1e85efcf15390c6f25a28151e68af1c7f703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied fluid mechanics</topic><topic>Applied sciences</topic><topic>Computational fluid dynamics</topic><topic>Computational fluid dynamics (CFD)</topic><topic>Empirical analysis</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Ground, air and sea transportation, marine construction</topic><topic>Hydrodynamics, hydraulics, hydrostatics</topic><topic>Laser Doppler anemometry (LDA)</topic><topic>Marine construction</topic><topic>Mathematical models</topic><topic>Ocean engineering</topic><topic>Physics</topic><topic>Planes</topic><topic>Propellers</topic><topic>Radial velocity</topic><topic>Ship′s propeller jet</topic><topic>Turbulence intensity</topic><topic>Velocity distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lam, W.H.</creatorcontrib><creatorcontrib>Hamill, G.A.</creatorcontrib><creatorcontrib>Robinson, D.J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Ocean engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lam, W.H.</au><au>Hamill, G.A.</au><au>Robinson, D.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Initial wash profiles from a ship propeller using CFD method</atitle><jtitle>Ocean engineering</jtitle><date>2013-11-01</date><risdate>2013</risdate><volume>72</volume><spage>257</spage><epage>266</epage><pages>257-266</pages><issn>0029-8018</issn><eissn>1873-5258</eissn><coden>OCENBQ</coden><abstract>The present paper was aimed at presenting the time-averaged velocity and turbulence intensity at the initial plane from a ship′s propeller using a Computational Fluid Dynamics (CFD) approach. Previous experimental studies found that the maximum velocity occurred at the initial plane within a jet, but no agreement was found with regards to the position of this maximum velocity and the velocity distribution across the initial plane. All work to date has been empirical in nature and new approaches are required to provide a better understanding of the flow field. The current investigation was conducted using a Computational Fluid Dynamics (CFD) approach, and found the position of the maximum velocity occurred at a distance of 0.585Rp from the rotation axis. The CFD prediction showed that the axial component of velocity is the main contributor to the velocity magnitude, followed by the tangential and radial velocities which are 78% and 3% of the maximum axial velocity respectively. The axial velocity distribution across the section showed a two-peaked-ridge profile with a low velocity core at the rotation axis.
•Provides CFD method to investigate time-averaged velocity and turbulence intensity within a ship propeller jet.•Contains axial, tangential and radial components within the jet.•Presents the profiles of turbulence kinetic energy and vorticity of the jet.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.oceaneng.2013.07.010</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0029-8018 |
ispartof | Ocean engineering, 2013-11, Vol.72, p.257-266 |
issn | 0029-8018 1873-5258 |
language | eng |
recordid | cdi_proquest_miscellaneous_1677938993 |
source | Access via ScienceDirect (Elsevier) |
subjects | Applied fluid mechanics Applied sciences Computational fluid dynamics Computational fluid dynamics (CFD) Empirical analysis Exact sciences and technology Fluid dynamics Fundamental areas of phenomenology (including applications) Ground, air and sea transportation, marine construction Hydrodynamics, hydraulics, hydrostatics Laser Doppler anemometry (LDA) Marine construction Mathematical models Ocean engineering Physics Planes Propellers Radial velocity Ship′s propeller jet Turbulence intensity Velocity distribution |
title | Initial wash profiles from a ship propeller using CFD method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T02%3A27%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Initial%20wash%20profiles%20from%20a%20ship%20propeller%20using%20CFD%20method&rft.jtitle=Ocean%20engineering&rft.au=Lam,%20W.H.&rft.date=2013-11-01&rft.volume=72&rft.spage=257&rft.epage=266&rft.pages=257-266&rft.issn=0029-8018&rft.eissn=1873-5258&rft.coden=OCENBQ&rft_id=info:doi/10.1016/j.oceaneng.2013.07.010&rft_dat=%3Cproquest_cross%3E1668253372%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1668253372&rft_id=info:pmid/&rft_els_id=S0029801813002989&rfr_iscdi=true |