In vitro biocompatibility of Ti-45S5 bioglass nanocomposites and their scaffolds
Titanium–10 wt % 45S5 Bioglass nanocomposites and their scaffolds were prepared by mechanical alloying (MA) followed by pressing, sintering, or combination of MA and a “space‐holder” sintering process, respectively. An amorphous structure was obtained at 15 h of milling. The crystallization of the a...
Gespeichert in:
Veröffentlicht in: | Journal of biomedical materials research. Part A 2014-05, Vol.102 (5), p.1316-1324 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1324 |
---|---|
container_issue | 5 |
container_start_page | 1316 |
container_title | Journal of biomedical materials research. Part A |
container_volume | 102 |
creator | Kaczmarek, M. Jurczyk, M. U. Rubis, B. Banaszak, A. Kolecka, A. Paszel, A. Jurczyk, K. Murias, M. Sikora, J. Jurczyk, M. |
description | Titanium–10 wt % 45S5 Bioglass nanocomposites and their scaffolds were prepared by mechanical alloying (MA) followed by pressing, sintering, or combination of MA and a “space‐holder” sintering process, respectively. An amorphous structure was obtained at 15 h of milling. The crystallization of the amorphous phase upon annealing led to the formation of a nanostructured Ti–10 wt % 45S5 Bioglass composite with a grain size of approximately 7 nm. The in vitro cytocompatibility of these materials was evaluated and compared with a conventional microcrystalline titanium. During the studies, established cell line of human fibroblasts CCD‐39Lu was cultured in the presence of tested materials and its survival rate, and proliferation activity were examined. Furthermore, the influence of the Ti–45S5 Bioglass nanocomposites and microcrystalline titanium was tested on the growth of Candida albicans yeast. Biocompatibility tests carried out indicate that the nanocomposite Ti–10 wt % 45S5 Bioglass scaffolds could be a possible candidate for dental implants and other medicinal applications. © 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 102A: 1316–1324, 2014. |
doi_str_mv | 10.1002/jbm.a.34808 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677934776</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1664191758</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4948-7d9eb25a22673c50ec3685771719c3d795214664313a023ad8fcdd92b481bb483</originalsourceid><addsrcrecordid>eNqNkc9rFDEcxYMotraevMuAFIQya5JvfkyObdFa2VphK4KXkMlkNOvMZE1m1f3vm-luK3iQXpJAPt_3kvcQekHwjGBM3yzrfmZmwCpcPUL7hHNaMiX44-nMVAlUiT30LKVlhgXm9CnaoyApBsn20aeLofjlxxiK2gcb-pUZfe07P26K0BbXvmR8wae7b51JqRjMcEuF5EeXCjM0xfjd-Vgka9o2dE06RE9a0yX3fLcfoM_v3l6fvS_nV-cXZyfz0jLFqlI2ytWUG0qFBMuxsyAqLiWRRFlopOKUMCEYEDCYgmmq1jaNojWrSJ0XOECvt7qrGH6uXRp175N1XWcGF9ZJEyGlAialeAAqGFFE8geocoIZBkxVRl_9gy7DOg75z5NgzplRmLyPt5SNIaXoWr2KvjdxownWU30616eNvq0v0y93muu6d809e9dXBo52gMmJd200g_XpL1cxyNFNj6Nb7rfv3OZ_nvrD6eXJnXu5HfJpdH_uh0z8oXNJkusvH8_16ddLBos50Qu4AZ0MvgM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1660524236</pqid></control><display><type>article</type><title>In vitro biocompatibility of Ti-45S5 bioglass nanocomposites and their scaffolds</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Kaczmarek, M. ; Jurczyk, M. U. ; Rubis, B. ; Banaszak, A. ; Kolecka, A. ; Paszel, A. ; Jurczyk, K. ; Murias, M. ; Sikora, J. ; Jurczyk, M.</creator><creatorcontrib>Kaczmarek, M. ; Jurczyk, M. U. ; Rubis, B. ; Banaszak, A. ; Kolecka, A. ; Paszel, A. ; Jurczyk, K. ; Murias, M. ; Sikora, J. ; Jurczyk, M.</creatorcontrib><description>Titanium–10 wt % 45S5 Bioglass nanocomposites and their scaffolds were prepared by mechanical alloying (MA) followed by pressing, sintering, or combination of MA and a “space‐holder” sintering process, respectively. An amorphous structure was obtained at 15 h of milling. The crystallization of the amorphous phase upon annealing led to the formation of a nanostructured Ti–10 wt % 45S5 Bioglass composite with a grain size of approximately 7 nm. The in vitro cytocompatibility of these materials was evaluated and compared with a conventional microcrystalline titanium. During the studies, established cell line of human fibroblasts CCD‐39Lu was cultured in the presence of tested materials and its survival rate, and proliferation activity were examined. Furthermore, the influence of the Ti–45S5 Bioglass nanocomposites and microcrystalline titanium was tested on the growth of Candida albicans yeast. Biocompatibility tests carried out indicate that the nanocomposite Ti–10 wt % 45S5 Bioglass scaffolds could be a possible candidate for dental implants and other medicinal applications. © 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 102A: 1316–1324, 2014.</description><identifier>ISSN: 1549-3296</identifier><identifier>EISSN: 1552-4965</identifier><identifier>DOI: 10.1002/jbm.a.34808</identifier><identifier>PMID: 23720374</identifier><language>eng</language><publisher>Hoboken, NJ: Blackwell Publishing Ltd</publisher><subject>Biocompatibility ; Biocompatible Materials - pharmacology ; Bioglass ; Biological and medical sciences ; Candida albicans ; Candida albicans - drug effects ; Candida albicans - growth & development ; Cell Death - drug effects ; Cell Line ; cell proliferation ; Cell Proliferation - drug effects ; Cell Survival - drug effects ; cell viability ; Ceramics - pharmacology ; Charge coupled devices ; Colony Count, Microbial ; Glass ; Humans ; In vitro testing ; Materials Testing ; Medical sciences ; nanocomposite ; Nanocomposites ; Nanocomposites - chemistry ; Nanocomposites - ultrastructure ; Propidium - metabolism ; scaffold ; Scaffolds ; Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases ; Surgical implants ; Technology. Biomaterials. Equipments ; Tissue Scaffolds - chemistry ; Titanium ; Titanium - pharmacology ; Titanium base alloys</subject><ispartof>Journal of biomedical materials research. Part A, 2014-05, Vol.102 (5), p.1316-1324</ispartof><rights>Copyright © 2013 Wiley Periodicals, Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4948-7d9eb25a22673c50ec3685771719c3d795214664313a023ad8fcdd92b481bb483</citedby><cites>FETCH-LOGICAL-c4948-7d9eb25a22673c50ec3685771719c3d795214664313a023ad8fcdd92b481bb483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbm.a.34808$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbm.a.34808$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28437959$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23720374$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kaczmarek, M.</creatorcontrib><creatorcontrib>Jurczyk, M. U.</creatorcontrib><creatorcontrib>Rubis, B.</creatorcontrib><creatorcontrib>Banaszak, A.</creatorcontrib><creatorcontrib>Kolecka, A.</creatorcontrib><creatorcontrib>Paszel, A.</creatorcontrib><creatorcontrib>Jurczyk, K.</creatorcontrib><creatorcontrib>Murias, M.</creatorcontrib><creatorcontrib>Sikora, J.</creatorcontrib><creatorcontrib>Jurczyk, M.</creatorcontrib><title>In vitro biocompatibility of Ti-45S5 bioglass nanocomposites and their scaffolds</title><title>Journal of biomedical materials research. Part A</title><addtitle>J. Biomed. Mater. Res</addtitle><description>Titanium–10 wt % 45S5 Bioglass nanocomposites and their scaffolds were prepared by mechanical alloying (MA) followed by pressing, sintering, or combination of MA and a “space‐holder” sintering process, respectively. An amorphous structure was obtained at 15 h of milling. The crystallization of the amorphous phase upon annealing led to the formation of a nanostructured Ti–10 wt % 45S5 Bioglass composite with a grain size of approximately 7 nm. The in vitro cytocompatibility of these materials was evaluated and compared with a conventional microcrystalline titanium. During the studies, established cell line of human fibroblasts CCD‐39Lu was cultured in the presence of tested materials and its survival rate, and proliferation activity were examined. Furthermore, the influence of the Ti–45S5 Bioglass nanocomposites and microcrystalline titanium was tested on the growth of Candida albicans yeast. Biocompatibility tests carried out indicate that the nanocomposite Ti–10 wt % 45S5 Bioglass scaffolds could be a possible candidate for dental implants and other medicinal applications. © 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 102A: 1316–1324, 2014.</description><subject>Biocompatibility</subject><subject>Biocompatible Materials - pharmacology</subject><subject>Bioglass</subject><subject>Biological and medical sciences</subject><subject>Candida albicans</subject><subject>Candida albicans - drug effects</subject><subject>Candida albicans - growth & development</subject><subject>Cell Death - drug effects</subject><subject>Cell Line</subject><subject>cell proliferation</subject><subject>Cell Proliferation - drug effects</subject><subject>Cell Survival - drug effects</subject><subject>cell viability</subject><subject>Ceramics - pharmacology</subject><subject>Charge coupled devices</subject><subject>Colony Count, Microbial</subject><subject>Glass</subject><subject>Humans</subject><subject>In vitro testing</subject><subject>Materials Testing</subject><subject>Medical sciences</subject><subject>nanocomposite</subject><subject>Nanocomposites</subject><subject>Nanocomposites - chemistry</subject><subject>Nanocomposites - ultrastructure</subject><subject>Propidium - metabolism</subject><subject>scaffold</subject><subject>Scaffolds</subject><subject>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</subject><subject>Surgical implants</subject><subject>Technology. Biomaterials. Equipments</subject><subject>Tissue Scaffolds - chemistry</subject><subject>Titanium</subject><subject>Titanium - pharmacology</subject><subject>Titanium base alloys</subject><issn>1549-3296</issn><issn>1552-4965</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc9rFDEcxYMotraevMuAFIQya5JvfkyObdFa2VphK4KXkMlkNOvMZE1m1f3vm-luK3iQXpJAPt_3kvcQekHwjGBM3yzrfmZmwCpcPUL7hHNaMiX44-nMVAlUiT30LKVlhgXm9CnaoyApBsn20aeLofjlxxiK2gcb-pUZfe07P26K0BbXvmR8wae7b51JqRjMcEuF5EeXCjM0xfjd-Vgka9o2dE06RE9a0yX3fLcfoM_v3l6fvS_nV-cXZyfz0jLFqlI2ytWUG0qFBMuxsyAqLiWRRFlopOKUMCEYEDCYgmmq1jaNojWrSJ0XOECvt7qrGH6uXRp175N1XWcGF9ZJEyGlAialeAAqGFFE8geocoIZBkxVRl_9gy7DOg75z5NgzplRmLyPt5SNIaXoWr2KvjdxownWU30616eNvq0v0y93muu6d809e9dXBo52gMmJd200g_XpL1cxyNFNj6Nb7rfv3OZ_nvrD6eXJnXu5HfJpdH_uh0z8oXNJkusvH8_16ddLBos50Qu4AZ0MvgM</recordid><startdate>201405</startdate><enddate>201405</enddate><creator>Kaczmarek, M.</creator><creator>Jurczyk, M. U.</creator><creator>Rubis, B.</creator><creator>Banaszak, A.</creator><creator>Kolecka, A.</creator><creator>Paszel, A.</creator><creator>Jurczyk, K.</creator><creator>Murias, M.</creator><creator>Sikora, J.</creator><creator>Jurczyk, M.</creator><general>Blackwell Publishing Ltd</general><general>Wiley-Blackwell</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201405</creationdate><title>In vitro biocompatibility of Ti-45S5 bioglass nanocomposites and their scaffolds</title><author>Kaczmarek, M. ; Jurczyk, M. U. ; Rubis, B. ; Banaszak, A. ; Kolecka, A. ; Paszel, A. ; Jurczyk, K. ; Murias, M. ; Sikora, J. ; Jurczyk, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4948-7d9eb25a22673c50ec3685771719c3d795214664313a023ad8fcdd92b481bb483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Biocompatibility</topic><topic>Biocompatible Materials - pharmacology</topic><topic>Bioglass</topic><topic>Biological and medical sciences</topic><topic>Candida albicans</topic><topic>Candida albicans - drug effects</topic><topic>Candida albicans - growth & development</topic><topic>Cell Death - drug effects</topic><topic>Cell Line</topic><topic>cell proliferation</topic><topic>Cell Proliferation - drug effects</topic><topic>Cell Survival - drug effects</topic><topic>cell viability</topic><topic>Ceramics - pharmacology</topic><topic>Charge coupled devices</topic><topic>Colony Count, Microbial</topic><topic>Glass</topic><topic>Humans</topic><topic>In vitro testing</topic><topic>Materials Testing</topic><topic>Medical sciences</topic><topic>nanocomposite</topic><topic>Nanocomposites</topic><topic>Nanocomposites - chemistry</topic><topic>Nanocomposites - ultrastructure</topic><topic>Propidium - metabolism</topic><topic>scaffold</topic><topic>Scaffolds</topic><topic>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</topic><topic>Surgical implants</topic><topic>Technology. Biomaterials. Equipments</topic><topic>Tissue Scaffolds - chemistry</topic><topic>Titanium</topic><topic>Titanium - pharmacology</topic><topic>Titanium base alloys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaczmarek, M.</creatorcontrib><creatorcontrib>Jurczyk, M. U.</creatorcontrib><creatorcontrib>Rubis, B.</creatorcontrib><creatorcontrib>Banaszak, A.</creatorcontrib><creatorcontrib>Kolecka, A.</creatorcontrib><creatorcontrib>Paszel, A.</creatorcontrib><creatorcontrib>Jurczyk, K.</creatorcontrib><creatorcontrib>Murias, M.</creatorcontrib><creatorcontrib>Sikora, J.</creatorcontrib><creatorcontrib>Jurczyk, M.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomedical materials research. Part A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaczmarek, M.</au><au>Jurczyk, M. U.</au><au>Rubis, B.</au><au>Banaszak, A.</au><au>Kolecka, A.</au><au>Paszel, A.</au><au>Jurczyk, K.</au><au>Murias, M.</au><au>Sikora, J.</au><au>Jurczyk, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In vitro biocompatibility of Ti-45S5 bioglass nanocomposites and their scaffolds</atitle><jtitle>Journal of biomedical materials research. Part A</jtitle><addtitle>J. Biomed. Mater. Res</addtitle><date>2014-05</date><risdate>2014</risdate><volume>102</volume><issue>5</issue><spage>1316</spage><epage>1324</epage><pages>1316-1324</pages><issn>1549-3296</issn><eissn>1552-4965</eissn><abstract>Titanium–10 wt % 45S5 Bioglass nanocomposites and their scaffolds were prepared by mechanical alloying (MA) followed by pressing, sintering, or combination of MA and a “space‐holder” sintering process, respectively. An amorphous structure was obtained at 15 h of milling. The crystallization of the amorphous phase upon annealing led to the formation of a nanostructured Ti–10 wt % 45S5 Bioglass composite with a grain size of approximately 7 nm. The in vitro cytocompatibility of these materials was evaluated and compared with a conventional microcrystalline titanium. During the studies, established cell line of human fibroblasts CCD‐39Lu was cultured in the presence of tested materials and its survival rate, and proliferation activity were examined. Furthermore, the influence of the Ti–45S5 Bioglass nanocomposites and microcrystalline titanium was tested on the growth of Candida albicans yeast. Biocompatibility tests carried out indicate that the nanocomposite Ti–10 wt % 45S5 Bioglass scaffolds could be a possible candidate for dental implants and other medicinal applications. © 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 102A: 1316–1324, 2014.</abstract><cop>Hoboken, NJ</cop><pub>Blackwell Publishing Ltd</pub><pmid>23720374</pmid><doi>10.1002/jbm.a.34808</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-3296 |
ispartof | Journal of biomedical materials research. Part A, 2014-05, Vol.102 (5), p.1316-1324 |
issn | 1549-3296 1552-4965 |
language | eng |
recordid | cdi_proquest_miscellaneous_1677934776 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Biocompatibility Biocompatible Materials - pharmacology Bioglass Biological and medical sciences Candida albicans Candida albicans - drug effects Candida albicans - growth & development Cell Death - drug effects Cell Line cell proliferation Cell Proliferation - drug effects Cell Survival - drug effects cell viability Ceramics - pharmacology Charge coupled devices Colony Count, Microbial Glass Humans In vitro testing Materials Testing Medical sciences nanocomposite Nanocomposites Nanocomposites - chemistry Nanocomposites - ultrastructure Propidium - metabolism scaffold Scaffolds Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases Surgical implants Technology. Biomaterials. Equipments Tissue Scaffolds - chemistry Titanium Titanium - pharmacology Titanium base alloys |
title | In vitro biocompatibility of Ti-45S5 bioglass nanocomposites and their scaffolds |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T16%3A27%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20vitro%20biocompatibility%20of%20Ti-45S5%20bioglass%20nanocomposites%20and%20their%20scaffolds&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20A&rft.au=Kaczmarek,%20M.&rft.date=2014-05&rft.volume=102&rft.issue=5&rft.spage=1316&rft.epage=1324&rft.pages=1316-1324&rft.issn=1549-3296&rft.eissn=1552-4965&rft_id=info:doi/10.1002/jbm.a.34808&rft_dat=%3Cproquest_cross%3E1664191758%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1660524236&rft_id=info:pmid/23720374&rfr_iscdi=true |