Two regression methods for estimation of a two-parameter Weibull distribution for reliability of dental materials

Abstract Objectives Comparison of estimation of the two-parameter Weibull distribution by two least squares (LS) methods with interchanged axes. Investigation of the influence of plotting positions and sample size. Derivation of 95% confidence intervals (95%CI) for Weibull parameters applicable in t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Dental materials 2015-02, Vol.31 (2), p.e33-e50
Hauptverfasser: Bütikofer, Lukas, Stawarczyk, Bogna, Roos, Malgorzata
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e50
container_issue 2
container_start_page e33
container_title Dental materials
container_volume 31
creator Bütikofer, Lukas
Stawarczyk, Bogna
Roos, Malgorzata
description Abstract Objectives Comparison of estimation of the two-parameter Weibull distribution by two least squares (LS) methods with interchanged axes. Investigation of the influence of plotting positions and sample size. Derivation of 95% confidence intervals (95%CI) for Weibull parameters applicable in the context of LS estimation. Preparation of a free available Excel template for computation of point estimates and 95%CI for Weibull modulus ( m ) and characteristic strength ( s ). Methods Monte Carlo simulation covering a wide range of Weibull parameters and sample sizes. Mathematical derivation of formulae for computation of 95%CI according to a Menon-type approach for both m and s . Empirical proof that the practically observed coverage agrees with the nominal one of 95%. Results Relative and absolute performance of LS estimators depended on sample size, plotting positions and parameter to be estimated. For most situations they outperformed the corresponding Maximum Likelihood (ML) estimator in terms of bias, while precision was almost the same. Naïve Wald-type 95%CI based on standard errors of LS regression coefficients did not reach targeted coverage. An easy-to-apply alternative based on asymptotic standard errors (Menon 95%CI) resulted in excellent coverage. Conclusion Accuracy of the LS methods for Weibull modulus and characteristic strength essentially depend on plotting position and sample size. Large sample sizes ( n ≥ 30) support a credible Weibull parameters estimation. An important complement of the point estimates of Weibull parameters is provided by the Menon 95%CI. A free available Excel template considerably facilitating computation of point and interval estimates of Weibull parameters is provided.
doi_str_mv 10.1016/j.dental.2014.11.014
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677931831</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S010956411400668X</els_id><sourcerecordid>1677931831</sourcerecordid><originalsourceid>FETCH-LOGICAL-c586t-ecb3d39ec0098ee3a2fa0dee9f2354d2e44822a0146ae601a1a1ad362848d45e3</originalsourceid><addsrcrecordid>eNqNUk1v1DAQtRAVXQr_AKEcuSR4bCdxLkio4qNSJQ60am-W156AF2-8tR2q_fc4pOXABeTDs6z3ZvzeDCGvgDZAoXu7ayxOWfuGURANQFPgCdmA7Iea0qF_SjYU6FC3nYBT8jylHaVUsAGekVPWimFgQm7I3dV9qCJ-i5iSC1O1x_w92FSNIVaYstvrvDyHsdJVvg_1QUddOBirG3Tb2fvKupRjuf7mLbKI3umt8y4fF936y6oUwui0Ty_IyVgAXz7gGbn--OHq_HN9-eXTxfn7y9q0sss1mi23fEBTvEhErtmoqUUcRsZbYRkKIRnTxXSnsaOgl2N5x6SQVrTIz8ibte4hhru5eFF7lwx6rycMc1LQ9f3AQXL4D2rLuJSsbwtVrFQTQ0oRR3WIJaR4VEDVMhe1U6tjtcxFAagCRfb6ocO83aP9I3ocRCG8WwlYIvnpMKpkHE4GrYtosrLB_avD3wWMd5Mz2v_AI6ZdmONU4lagElNUfV12Y1kNEJR2nbzlvwBWB7c8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1652388275</pqid></control><display><type>article</type><title>Two regression methods for estimation of a two-parameter Weibull distribution for reliability of dental materials</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Bütikofer, Lukas ; Stawarczyk, Bogna ; Roos, Malgorzata</creator><creatorcontrib>Bütikofer, Lukas ; Stawarczyk, Bogna ; Roos, Malgorzata</creatorcontrib><description>Abstract Objectives Comparison of estimation of the two-parameter Weibull distribution by two least squares (LS) methods with interchanged axes. Investigation of the influence of plotting positions and sample size. Derivation of 95% confidence intervals (95%CI) for Weibull parameters applicable in the context of LS estimation. Preparation of a free available Excel template for computation of point estimates and 95%CI for Weibull modulus ( m ) and characteristic strength ( s ). Methods Monte Carlo simulation covering a wide range of Weibull parameters and sample sizes. Mathematical derivation of formulae for computation of 95%CI according to a Menon-type approach for both m and s . Empirical proof that the practically observed coverage agrees with the nominal one of 95%. Results Relative and absolute performance of LS estimators depended on sample size, plotting positions and parameter to be estimated. For most situations they outperformed the corresponding Maximum Likelihood (ML) estimator in terms of bias, while precision was almost the same. Naïve Wald-type 95%CI based on standard errors of LS regression coefficients did not reach targeted coverage. An easy-to-apply alternative based on asymptotic standard errors (Menon 95%CI) resulted in excellent coverage. Conclusion Accuracy of the LS methods for Weibull modulus and characteristic strength essentially depend on plotting position and sample size. Large sample sizes ( n ≥ 30) support a credible Weibull parameters estimation. An important complement of the point estimates of Weibull parameters is provided by the Menon 95%CI. A free available Excel template considerably facilitating computation of point and interval estimates of Weibull parameters is provided.</description><identifier>ISSN: 0109-5641</identifier><identifier>EISSN: 1879-0097</identifier><identifier>DOI: 10.1016/j.dental.2014.11.014</identifier><identifier>PMID: 25499248</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Advanced Basic Science ; Computation ; Computer simulation ; Confidence interval ; Coverage ; Dental materials ; Dental Materials - chemistry ; Dental Restoration Failure - statistics &amp; numerical data ; Dentistry ; Estimates ; Estimators ; Failure probability ; Hazen ranks ; Least squares ; Likelihood Functions ; Mathematical analysis ; Mean ranks ; Median ranks ; Monte Carlo Method ; Plotting ; Plotting positions ; Regression Analysis ; Reproducibility of Results ; Standard error ; Statistical Distributions ; Weibull characteristic strength ; Weibull distribution ; Weibull modulus</subject><ispartof>Dental materials, 2015-02, Vol.31 (2), p.e33-e50</ispartof><rights>Academy of Dental Materials</rights><rights>2014 Academy of Dental Materials</rights><rights>Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c586t-ecb3d39ec0098ee3a2fa0dee9f2354d2e44822a0146ae601a1a1ad362848d45e3</citedby><cites>FETCH-LOGICAL-c586t-ecb3d39ec0098ee3a2fa0dee9f2354d2e44822a0146ae601a1a1ad362848d45e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S010956411400668X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25499248$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bütikofer, Lukas</creatorcontrib><creatorcontrib>Stawarczyk, Bogna</creatorcontrib><creatorcontrib>Roos, Malgorzata</creatorcontrib><title>Two regression methods for estimation of a two-parameter Weibull distribution for reliability of dental materials</title><title>Dental materials</title><addtitle>Dent Mater</addtitle><description>Abstract Objectives Comparison of estimation of the two-parameter Weibull distribution by two least squares (LS) methods with interchanged axes. Investigation of the influence of plotting positions and sample size. Derivation of 95% confidence intervals (95%CI) for Weibull parameters applicable in the context of LS estimation. Preparation of a free available Excel template for computation of point estimates and 95%CI for Weibull modulus ( m ) and characteristic strength ( s ). Methods Monte Carlo simulation covering a wide range of Weibull parameters and sample sizes. Mathematical derivation of formulae for computation of 95%CI according to a Menon-type approach for both m and s . Empirical proof that the practically observed coverage agrees with the nominal one of 95%. Results Relative and absolute performance of LS estimators depended on sample size, plotting positions and parameter to be estimated. For most situations they outperformed the corresponding Maximum Likelihood (ML) estimator in terms of bias, while precision was almost the same. Naïve Wald-type 95%CI based on standard errors of LS regression coefficients did not reach targeted coverage. An easy-to-apply alternative based on asymptotic standard errors (Menon 95%CI) resulted in excellent coverage. Conclusion Accuracy of the LS methods for Weibull modulus and characteristic strength essentially depend on plotting position and sample size. Large sample sizes ( n ≥ 30) support a credible Weibull parameters estimation. An important complement of the point estimates of Weibull parameters is provided by the Menon 95%CI. A free available Excel template considerably facilitating computation of point and interval estimates of Weibull parameters is provided.</description><subject>Advanced Basic Science</subject><subject>Computation</subject><subject>Computer simulation</subject><subject>Confidence interval</subject><subject>Coverage</subject><subject>Dental materials</subject><subject>Dental Materials - chemistry</subject><subject>Dental Restoration Failure - statistics &amp; numerical data</subject><subject>Dentistry</subject><subject>Estimates</subject><subject>Estimators</subject><subject>Failure probability</subject><subject>Hazen ranks</subject><subject>Least squares</subject><subject>Likelihood Functions</subject><subject>Mathematical analysis</subject><subject>Mean ranks</subject><subject>Median ranks</subject><subject>Monte Carlo Method</subject><subject>Plotting</subject><subject>Plotting positions</subject><subject>Regression Analysis</subject><subject>Reproducibility of Results</subject><subject>Standard error</subject><subject>Statistical Distributions</subject><subject>Weibull characteristic strength</subject><subject>Weibull distribution</subject><subject>Weibull modulus</subject><issn>0109-5641</issn><issn>1879-0097</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNUk1v1DAQtRAVXQr_AKEcuSR4bCdxLkio4qNSJQ60am-W156AF2-8tR2q_fc4pOXABeTDs6z3ZvzeDCGvgDZAoXu7ayxOWfuGURANQFPgCdmA7Iea0qF_SjYU6FC3nYBT8jylHaVUsAGekVPWimFgQm7I3dV9qCJ-i5iSC1O1x_w92FSNIVaYstvrvDyHsdJVvg_1QUddOBirG3Tb2fvKupRjuf7mLbKI3umt8y4fF936y6oUwui0Ty_IyVgAXz7gGbn--OHq_HN9-eXTxfn7y9q0sss1mi23fEBTvEhErtmoqUUcRsZbYRkKIRnTxXSnsaOgl2N5x6SQVrTIz8ibte4hhru5eFF7lwx6rycMc1LQ9f3AQXL4D2rLuJSsbwtVrFQTQ0oRR3WIJaR4VEDVMhe1U6tjtcxFAagCRfb6ocO83aP9I3ocRCG8WwlYIvnpMKpkHE4GrYtosrLB_avD3wWMd5Mz2v_AI6ZdmONU4lagElNUfV12Y1kNEJR2nbzlvwBWB7c8</recordid><startdate>20150201</startdate><enddate>20150201</enddate><creator>Bütikofer, Lukas</creator><creator>Stawarczyk, Bogna</creator><creator>Roos, Malgorzata</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20150201</creationdate><title>Two regression methods for estimation of a two-parameter Weibull distribution for reliability of dental materials</title><author>Bütikofer, Lukas ; Stawarczyk, Bogna ; Roos, Malgorzata</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c586t-ecb3d39ec0098ee3a2fa0dee9f2354d2e44822a0146ae601a1a1ad362848d45e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Advanced Basic Science</topic><topic>Computation</topic><topic>Computer simulation</topic><topic>Confidence interval</topic><topic>Coverage</topic><topic>Dental materials</topic><topic>Dental Materials - chemistry</topic><topic>Dental Restoration Failure - statistics &amp; numerical data</topic><topic>Dentistry</topic><topic>Estimates</topic><topic>Estimators</topic><topic>Failure probability</topic><topic>Hazen ranks</topic><topic>Least squares</topic><topic>Likelihood Functions</topic><topic>Mathematical analysis</topic><topic>Mean ranks</topic><topic>Median ranks</topic><topic>Monte Carlo Method</topic><topic>Plotting</topic><topic>Plotting positions</topic><topic>Regression Analysis</topic><topic>Reproducibility of Results</topic><topic>Standard error</topic><topic>Statistical Distributions</topic><topic>Weibull characteristic strength</topic><topic>Weibull distribution</topic><topic>Weibull modulus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bütikofer, Lukas</creatorcontrib><creatorcontrib>Stawarczyk, Bogna</creatorcontrib><creatorcontrib>Roos, Malgorzata</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Dental materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bütikofer, Lukas</au><au>Stawarczyk, Bogna</au><au>Roos, Malgorzata</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two regression methods for estimation of a two-parameter Weibull distribution for reliability of dental materials</atitle><jtitle>Dental materials</jtitle><addtitle>Dent Mater</addtitle><date>2015-02-01</date><risdate>2015</risdate><volume>31</volume><issue>2</issue><spage>e33</spage><epage>e50</epage><pages>e33-e50</pages><issn>0109-5641</issn><eissn>1879-0097</eissn><abstract>Abstract Objectives Comparison of estimation of the two-parameter Weibull distribution by two least squares (LS) methods with interchanged axes. Investigation of the influence of plotting positions and sample size. Derivation of 95% confidence intervals (95%CI) for Weibull parameters applicable in the context of LS estimation. Preparation of a free available Excel template for computation of point estimates and 95%CI for Weibull modulus ( m ) and characteristic strength ( s ). Methods Monte Carlo simulation covering a wide range of Weibull parameters and sample sizes. Mathematical derivation of formulae for computation of 95%CI according to a Menon-type approach for both m and s . Empirical proof that the practically observed coverage agrees with the nominal one of 95%. Results Relative and absolute performance of LS estimators depended on sample size, plotting positions and parameter to be estimated. For most situations they outperformed the corresponding Maximum Likelihood (ML) estimator in terms of bias, while precision was almost the same. Naïve Wald-type 95%CI based on standard errors of LS regression coefficients did not reach targeted coverage. An easy-to-apply alternative based on asymptotic standard errors (Menon 95%CI) resulted in excellent coverage. Conclusion Accuracy of the LS methods for Weibull modulus and characteristic strength essentially depend on plotting position and sample size. Large sample sizes ( n ≥ 30) support a credible Weibull parameters estimation. An important complement of the point estimates of Weibull parameters is provided by the Menon 95%CI. A free available Excel template considerably facilitating computation of point and interval estimates of Weibull parameters is provided.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>25499248</pmid><doi>10.1016/j.dental.2014.11.014</doi></addata></record>
fulltext fulltext
identifier ISSN: 0109-5641
ispartof Dental materials, 2015-02, Vol.31 (2), p.e33-e50
issn 0109-5641
1879-0097
language eng
recordid cdi_proquest_miscellaneous_1677931831
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Advanced Basic Science
Computation
Computer simulation
Confidence interval
Coverage
Dental materials
Dental Materials - chemistry
Dental Restoration Failure - statistics & numerical data
Dentistry
Estimates
Estimators
Failure probability
Hazen ranks
Least squares
Likelihood Functions
Mathematical analysis
Mean ranks
Median ranks
Monte Carlo Method
Plotting
Plotting positions
Regression Analysis
Reproducibility of Results
Standard error
Statistical Distributions
Weibull characteristic strength
Weibull distribution
Weibull modulus
title Two regression methods for estimation of a two-parameter Weibull distribution for reliability of dental materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T23%3A07%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two%20regression%20methods%20for%20estimation%20of%20a%20two-parameter%20Weibull%20distribution%20for%20reliability%20of%20dental%20materials&rft.jtitle=Dental%20materials&rft.au=B%C3%BCtikofer,%20Lukas&rft.date=2015-02-01&rft.volume=31&rft.issue=2&rft.spage=e33&rft.epage=e50&rft.pages=e33-e50&rft.issn=0109-5641&rft.eissn=1879-0097&rft_id=info:doi/10.1016/j.dental.2014.11.014&rft_dat=%3Cproquest_cross%3E1677931831%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1652388275&rft_id=info:pmid/25499248&rft_els_id=S010956411400668X&rfr_iscdi=true