Two regression methods for estimation of a two-parameter Weibull distribution for reliability of dental materials
Abstract Objectives Comparison of estimation of the two-parameter Weibull distribution by two least squares (LS) methods with interchanged axes. Investigation of the influence of plotting positions and sample size. Derivation of 95% confidence intervals (95%CI) for Weibull parameters applicable in t...
Gespeichert in:
Veröffentlicht in: | Dental materials 2015-02, Vol.31 (2), p.e33-e50 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e50 |
---|---|
container_issue | 2 |
container_start_page | e33 |
container_title | Dental materials |
container_volume | 31 |
creator | Bütikofer, Lukas Stawarczyk, Bogna Roos, Malgorzata |
description | Abstract Objectives Comparison of estimation of the two-parameter Weibull distribution by two least squares (LS) methods with interchanged axes. Investigation of the influence of plotting positions and sample size. Derivation of 95% confidence intervals (95%CI) for Weibull parameters applicable in the context of LS estimation. Preparation of a free available Excel template for computation of point estimates and 95%CI for Weibull modulus ( m ) and characteristic strength ( s ). Methods Monte Carlo simulation covering a wide range of Weibull parameters and sample sizes. Mathematical derivation of formulae for computation of 95%CI according to a Menon-type approach for both m and s . Empirical proof that the practically observed coverage agrees with the nominal one of 95%. Results Relative and absolute performance of LS estimators depended on sample size, plotting positions and parameter to be estimated. For most situations they outperformed the corresponding Maximum Likelihood (ML) estimator in terms of bias, while precision was almost the same. Naïve Wald-type 95%CI based on standard errors of LS regression coefficients did not reach targeted coverage. An easy-to-apply alternative based on asymptotic standard errors (Menon 95%CI) resulted in excellent coverage. Conclusion Accuracy of the LS methods for Weibull modulus and characteristic strength essentially depend on plotting position and sample size. Large sample sizes ( n ≥ 30) support a credible Weibull parameters estimation. An important complement of the point estimates of Weibull parameters is provided by the Menon 95%CI. A free available Excel template considerably facilitating computation of point and interval estimates of Weibull parameters is provided. |
doi_str_mv | 10.1016/j.dental.2014.11.014 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677931831</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S010956411400668X</els_id><sourcerecordid>1677931831</sourcerecordid><originalsourceid>FETCH-LOGICAL-c586t-ecb3d39ec0098ee3a2fa0dee9f2354d2e44822a0146ae601a1a1ad362848d45e3</originalsourceid><addsrcrecordid>eNqNUk1v1DAQtRAVXQr_AKEcuSR4bCdxLkio4qNSJQ60am-W156AF2-8tR2q_fc4pOXABeTDs6z3ZvzeDCGvgDZAoXu7ayxOWfuGURANQFPgCdmA7Iea0qF_SjYU6FC3nYBT8jylHaVUsAGekVPWimFgQm7I3dV9qCJ-i5iSC1O1x_w92FSNIVaYstvrvDyHsdJVvg_1QUddOBirG3Tb2fvKupRjuf7mLbKI3umt8y4fF936y6oUwui0Ty_IyVgAXz7gGbn--OHq_HN9-eXTxfn7y9q0sss1mi23fEBTvEhErtmoqUUcRsZbYRkKIRnTxXSnsaOgl2N5x6SQVrTIz8ibte4hhru5eFF7lwx6rycMc1LQ9f3AQXL4D2rLuJSsbwtVrFQTQ0oRR3WIJaR4VEDVMhe1U6tjtcxFAagCRfb6ocO83aP9I3ocRCG8WwlYIvnpMKpkHE4GrYtosrLB_avD3wWMd5Mz2v_AI6ZdmONU4lagElNUfV12Y1kNEJR2nbzlvwBWB7c8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1652388275</pqid></control><display><type>article</type><title>Two regression methods for estimation of a two-parameter Weibull distribution for reliability of dental materials</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Bütikofer, Lukas ; Stawarczyk, Bogna ; Roos, Malgorzata</creator><creatorcontrib>Bütikofer, Lukas ; Stawarczyk, Bogna ; Roos, Malgorzata</creatorcontrib><description>Abstract Objectives Comparison of estimation of the two-parameter Weibull distribution by two least squares (LS) methods with interchanged axes. Investigation of the influence of plotting positions and sample size. Derivation of 95% confidence intervals (95%CI) for Weibull parameters applicable in the context of LS estimation. Preparation of a free available Excel template for computation of point estimates and 95%CI for Weibull modulus ( m ) and characteristic strength ( s ). Methods Monte Carlo simulation covering a wide range of Weibull parameters and sample sizes. Mathematical derivation of formulae for computation of 95%CI according to a Menon-type approach for both m and s . Empirical proof that the practically observed coverage agrees with the nominal one of 95%. Results Relative and absolute performance of LS estimators depended on sample size, plotting positions and parameter to be estimated. For most situations they outperformed the corresponding Maximum Likelihood (ML) estimator in terms of bias, while precision was almost the same. Naïve Wald-type 95%CI based on standard errors of LS regression coefficients did not reach targeted coverage. An easy-to-apply alternative based on asymptotic standard errors (Menon 95%CI) resulted in excellent coverage. Conclusion Accuracy of the LS methods for Weibull modulus and characteristic strength essentially depend on plotting position and sample size. Large sample sizes ( n ≥ 30) support a credible Weibull parameters estimation. An important complement of the point estimates of Weibull parameters is provided by the Menon 95%CI. A free available Excel template considerably facilitating computation of point and interval estimates of Weibull parameters is provided.</description><identifier>ISSN: 0109-5641</identifier><identifier>EISSN: 1879-0097</identifier><identifier>DOI: 10.1016/j.dental.2014.11.014</identifier><identifier>PMID: 25499248</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Advanced Basic Science ; Computation ; Computer simulation ; Confidence interval ; Coverage ; Dental materials ; Dental Materials - chemistry ; Dental Restoration Failure - statistics & numerical data ; Dentistry ; Estimates ; Estimators ; Failure probability ; Hazen ranks ; Least squares ; Likelihood Functions ; Mathematical analysis ; Mean ranks ; Median ranks ; Monte Carlo Method ; Plotting ; Plotting positions ; Regression Analysis ; Reproducibility of Results ; Standard error ; Statistical Distributions ; Weibull characteristic strength ; Weibull distribution ; Weibull modulus</subject><ispartof>Dental materials, 2015-02, Vol.31 (2), p.e33-e50</ispartof><rights>Academy of Dental Materials</rights><rights>2014 Academy of Dental Materials</rights><rights>Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c586t-ecb3d39ec0098ee3a2fa0dee9f2354d2e44822a0146ae601a1a1ad362848d45e3</citedby><cites>FETCH-LOGICAL-c586t-ecb3d39ec0098ee3a2fa0dee9f2354d2e44822a0146ae601a1a1ad362848d45e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S010956411400668X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25499248$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bütikofer, Lukas</creatorcontrib><creatorcontrib>Stawarczyk, Bogna</creatorcontrib><creatorcontrib>Roos, Malgorzata</creatorcontrib><title>Two regression methods for estimation of a two-parameter Weibull distribution for reliability of dental materials</title><title>Dental materials</title><addtitle>Dent Mater</addtitle><description>Abstract Objectives Comparison of estimation of the two-parameter Weibull distribution by two least squares (LS) methods with interchanged axes. Investigation of the influence of plotting positions and sample size. Derivation of 95% confidence intervals (95%CI) for Weibull parameters applicable in the context of LS estimation. Preparation of a free available Excel template for computation of point estimates and 95%CI for Weibull modulus ( m ) and characteristic strength ( s ). Methods Monte Carlo simulation covering a wide range of Weibull parameters and sample sizes. Mathematical derivation of formulae for computation of 95%CI according to a Menon-type approach for both m and s . Empirical proof that the practically observed coverage agrees with the nominal one of 95%. Results Relative and absolute performance of LS estimators depended on sample size, plotting positions and parameter to be estimated. For most situations they outperformed the corresponding Maximum Likelihood (ML) estimator in terms of bias, while precision was almost the same. Naïve Wald-type 95%CI based on standard errors of LS regression coefficients did not reach targeted coverage. An easy-to-apply alternative based on asymptotic standard errors (Menon 95%CI) resulted in excellent coverage. Conclusion Accuracy of the LS methods for Weibull modulus and characteristic strength essentially depend on plotting position and sample size. Large sample sizes ( n ≥ 30) support a credible Weibull parameters estimation. An important complement of the point estimates of Weibull parameters is provided by the Menon 95%CI. A free available Excel template considerably facilitating computation of point and interval estimates of Weibull parameters is provided.</description><subject>Advanced Basic Science</subject><subject>Computation</subject><subject>Computer simulation</subject><subject>Confidence interval</subject><subject>Coverage</subject><subject>Dental materials</subject><subject>Dental Materials - chemistry</subject><subject>Dental Restoration Failure - statistics & numerical data</subject><subject>Dentistry</subject><subject>Estimates</subject><subject>Estimators</subject><subject>Failure probability</subject><subject>Hazen ranks</subject><subject>Least squares</subject><subject>Likelihood Functions</subject><subject>Mathematical analysis</subject><subject>Mean ranks</subject><subject>Median ranks</subject><subject>Monte Carlo Method</subject><subject>Plotting</subject><subject>Plotting positions</subject><subject>Regression Analysis</subject><subject>Reproducibility of Results</subject><subject>Standard error</subject><subject>Statistical Distributions</subject><subject>Weibull characteristic strength</subject><subject>Weibull distribution</subject><subject>Weibull modulus</subject><issn>0109-5641</issn><issn>1879-0097</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNUk1v1DAQtRAVXQr_AKEcuSR4bCdxLkio4qNSJQ60am-W156AF2-8tR2q_fc4pOXABeTDs6z3ZvzeDCGvgDZAoXu7ayxOWfuGURANQFPgCdmA7Iea0qF_SjYU6FC3nYBT8jylHaVUsAGekVPWimFgQm7I3dV9qCJ-i5iSC1O1x_w92FSNIVaYstvrvDyHsdJVvg_1QUddOBirG3Tb2fvKupRjuf7mLbKI3umt8y4fF936y6oUwui0Ty_IyVgAXz7gGbn--OHq_HN9-eXTxfn7y9q0sss1mi23fEBTvEhErtmoqUUcRsZbYRkKIRnTxXSnsaOgl2N5x6SQVrTIz8ibte4hhru5eFF7lwx6rycMc1LQ9f3AQXL4D2rLuJSsbwtVrFQTQ0oRR3WIJaR4VEDVMhe1U6tjtcxFAagCRfb6ocO83aP9I3ocRCG8WwlYIvnpMKpkHE4GrYtosrLB_avD3wWMd5Mz2v_AI6ZdmONU4lagElNUfV12Y1kNEJR2nbzlvwBWB7c8</recordid><startdate>20150201</startdate><enddate>20150201</enddate><creator>Bütikofer, Lukas</creator><creator>Stawarczyk, Bogna</creator><creator>Roos, Malgorzata</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20150201</creationdate><title>Two regression methods for estimation of a two-parameter Weibull distribution for reliability of dental materials</title><author>Bütikofer, Lukas ; Stawarczyk, Bogna ; Roos, Malgorzata</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c586t-ecb3d39ec0098ee3a2fa0dee9f2354d2e44822a0146ae601a1a1ad362848d45e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Advanced Basic Science</topic><topic>Computation</topic><topic>Computer simulation</topic><topic>Confidence interval</topic><topic>Coverage</topic><topic>Dental materials</topic><topic>Dental Materials - chemistry</topic><topic>Dental Restoration Failure - statistics & numerical data</topic><topic>Dentistry</topic><topic>Estimates</topic><topic>Estimators</topic><topic>Failure probability</topic><topic>Hazen ranks</topic><topic>Least squares</topic><topic>Likelihood Functions</topic><topic>Mathematical analysis</topic><topic>Mean ranks</topic><topic>Median ranks</topic><topic>Monte Carlo Method</topic><topic>Plotting</topic><topic>Plotting positions</topic><topic>Regression Analysis</topic><topic>Reproducibility of Results</topic><topic>Standard error</topic><topic>Statistical Distributions</topic><topic>Weibull characteristic strength</topic><topic>Weibull distribution</topic><topic>Weibull modulus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bütikofer, Lukas</creatorcontrib><creatorcontrib>Stawarczyk, Bogna</creatorcontrib><creatorcontrib>Roos, Malgorzata</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Dental materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bütikofer, Lukas</au><au>Stawarczyk, Bogna</au><au>Roos, Malgorzata</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two regression methods for estimation of a two-parameter Weibull distribution for reliability of dental materials</atitle><jtitle>Dental materials</jtitle><addtitle>Dent Mater</addtitle><date>2015-02-01</date><risdate>2015</risdate><volume>31</volume><issue>2</issue><spage>e33</spage><epage>e50</epage><pages>e33-e50</pages><issn>0109-5641</issn><eissn>1879-0097</eissn><abstract>Abstract Objectives Comparison of estimation of the two-parameter Weibull distribution by two least squares (LS) methods with interchanged axes. Investigation of the influence of plotting positions and sample size. Derivation of 95% confidence intervals (95%CI) for Weibull parameters applicable in the context of LS estimation. Preparation of a free available Excel template for computation of point estimates and 95%CI for Weibull modulus ( m ) and characteristic strength ( s ). Methods Monte Carlo simulation covering a wide range of Weibull parameters and sample sizes. Mathematical derivation of formulae for computation of 95%CI according to a Menon-type approach for both m and s . Empirical proof that the practically observed coverage agrees with the nominal one of 95%. Results Relative and absolute performance of LS estimators depended on sample size, plotting positions and parameter to be estimated. For most situations they outperformed the corresponding Maximum Likelihood (ML) estimator in terms of bias, while precision was almost the same. Naïve Wald-type 95%CI based on standard errors of LS regression coefficients did not reach targeted coverage. An easy-to-apply alternative based on asymptotic standard errors (Menon 95%CI) resulted in excellent coverage. Conclusion Accuracy of the LS methods for Weibull modulus and characteristic strength essentially depend on plotting position and sample size. Large sample sizes ( n ≥ 30) support a credible Weibull parameters estimation. An important complement of the point estimates of Weibull parameters is provided by the Menon 95%CI. A free available Excel template considerably facilitating computation of point and interval estimates of Weibull parameters is provided.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>25499248</pmid><doi>10.1016/j.dental.2014.11.014</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0109-5641 |
ispartof | Dental materials, 2015-02, Vol.31 (2), p.e33-e50 |
issn | 0109-5641 1879-0097 |
language | eng |
recordid | cdi_proquest_miscellaneous_1677931831 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Advanced Basic Science Computation Computer simulation Confidence interval Coverage Dental materials Dental Materials - chemistry Dental Restoration Failure - statistics & numerical data Dentistry Estimates Estimators Failure probability Hazen ranks Least squares Likelihood Functions Mathematical analysis Mean ranks Median ranks Monte Carlo Method Plotting Plotting positions Regression Analysis Reproducibility of Results Standard error Statistical Distributions Weibull characteristic strength Weibull distribution Weibull modulus |
title | Two regression methods for estimation of a two-parameter Weibull distribution for reliability of dental materials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T23%3A07%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two%20regression%20methods%20for%20estimation%20of%20a%20two-parameter%20Weibull%20distribution%20for%20reliability%20of%20dental%20materials&rft.jtitle=Dental%20materials&rft.au=B%C3%BCtikofer,%20Lukas&rft.date=2015-02-01&rft.volume=31&rft.issue=2&rft.spage=e33&rft.epage=e50&rft.pages=e33-e50&rft.issn=0109-5641&rft.eissn=1879-0097&rft_id=info:doi/10.1016/j.dental.2014.11.014&rft_dat=%3Cproquest_cross%3E1677931831%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1652388275&rft_id=info:pmid/25499248&rft_els_id=S010956411400668X&rfr_iscdi=true |