Photoluminescence-Tunable Carbon Nanodots: Surface-State Energy-Gap Tuning

The photoluminescence of carbon nanodots (C‐dots) can be tuned by changing their surface chemistry or size because the photoluminescence is a function of the surface‐state electronic transitions. Increasing the degree of surface oxidation leads to a narrowing of the energy gap of the surface; meanwh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2015-03, Vol.27 (10), p.1663-1667
Hauptverfasser: Bao, Lei, Liu, Cui, Zhang, Zhi-Ling, Pang, Dai-Wen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1667
container_issue 10
container_start_page 1663
container_title Advanced materials (Weinheim)
container_volume 27
creator Bao, Lei
Liu, Cui
Zhang, Zhi-Ling
Pang, Dai-Wen
description The photoluminescence of carbon nanodots (C‐dots) can be tuned by changing their surface chemistry or size because the photoluminescence is a function of the surface‐state electronic transitions. Increasing the degree of surface oxidation leads to a narrowing of the energy gap of the surface; meanwhile, larger C‐dots with an extensive π‐electron system, which can couple with surface electronic states, can also lead to a narrowing of the energy gap of the surface states.
doi_str_mv 10.1002/adma.201405070
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677930181</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2715594100</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5140-a62e9e804e3879d571800c0062e6060ccb44c153b29142fe689a7d2f946fbab03</originalsourceid><addsrcrecordid>eNqNkc1P20AQxVdVEYSPa4-VpV64OMx-e3uLUghFgYJC1eNqba-pqb2b7tpq8993USCquLSnkUa_9_RmHkLvMEwxADkzdW-mBDADDhLeoAnmBOcMFH-LJqAoz5VgxQE6jPERAJQAsY8OCOeFwgxP0NXtdz_4buxbZ2NlXWXz-9GZsrPZ3ITSu-zGOF_7IX7MVmNoTAJWgxlsdu5seNjkC7POkqJ1D8dorzFdtCfP8wh9vTi_n1_myy-Lz_PZMq94ipkbQayyBTBLC6lqLnEBUAGkdQoHVVUyVmFOS5ISksaKQhlZk0Yx0ZSmBHqETre-6-B_jjYOum9T9K4zzvoxaiykVBRwgf8DFYSRglGa0A-v0Ec_BpcO0URizhVL_07UdEtVwccYbKPXoe1N2GgM-qkQ_VSI3hWSBO-fbceyt_UOf2kgAWoL_Go7u_mHnZ59up79bZ5vtW0c7O-d1oQfWkgquf52s9BLfnexWshbfUn_AIyxo6U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2715594100</pqid></control><display><type>article</type><title>Photoluminescence-Tunable Carbon Nanodots: Surface-State Energy-Gap Tuning</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Bao, Lei ; Liu, Cui ; Zhang, Zhi-Ling ; Pang, Dai-Wen</creator><creatorcontrib>Bao, Lei ; Liu, Cui ; Zhang, Zhi-Ling ; Pang, Dai-Wen</creatorcontrib><description>The photoluminescence of carbon nanodots (C‐dots) can be tuned by changing their surface chemistry or size because the photoluminescence is a function of the surface‐state electronic transitions. Increasing the degree of surface oxidation leads to a narrowing of the energy gap of the surface; meanwhile, larger C‐dots with an extensive π‐electron system, which can couple with surface electronic states, can also lead to a narrowing of the energy gap of the surface states.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.201405070</identifier><identifier>PMID: 25589141</identifier><language>eng</language><publisher>Germany: Blackwell Publishing Ltd</publisher><subject>Animals ; bio-imaging ; Carbon ; Carbon - chemistry ; Catheter Ablation ; Cercopithecus aethiops ; Electron states ; Electron transitions ; Electronics ; Energy gap ; fluorescence ; Joining ; Luminescence ; Materials science ; mechanisms ; Microscopy, Electron, Transmission ; nanoparticles ; Nanoparticles - chemistry ; Nanostructure ; Nitric Acid - chemistry ; Oxidation ; Oxidation-Reduction ; Photoluminescence ; Quantum Dots - chemistry ; Spectrum Analysis ; Surface chemistry ; Surface Properties ; Tuning ; Vero Cells ; X-Ray Diffraction</subject><ispartof>Advanced materials (Weinheim), 2015-03, Vol.27 (10), p.1663-1667</ispartof><rights>2015 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2015 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>Copyright © 2015 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5140-a62e9e804e3879d571800c0062e6060ccb44c153b29142fe689a7d2f946fbab03</citedby><cites>FETCH-LOGICAL-c5140-a62e9e804e3879d571800c0062e6060ccb44c153b29142fe689a7d2f946fbab03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.201405070$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.201405070$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25589141$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bao, Lei</creatorcontrib><creatorcontrib>Liu, Cui</creatorcontrib><creatorcontrib>Zhang, Zhi-Ling</creatorcontrib><creatorcontrib>Pang, Dai-Wen</creatorcontrib><title>Photoluminescence-Tunable Carbon Nanodots: Surface-State Energy-Gap Tuning</title><title>Advanced materials (Weinheim)</title><addtitle>Adv. Mater</addtitle><description>The photoluminescence of carbon nanodots (C‐dots) can be tuned by changing their surface chemistry or size because the photoluminescence is a function of the surface‐state electronic transitions. Increasing the degree of surface oxidation leads to a narrowing of the energy gap of the surface; meanwhile, larger C‐dots with an extensive π‐electron system, which can couple with surface electronic states, can also lead to a narrowing of the energy gap of the surface states.</description><subject>Animals</subject><subject>bio-imaging</subject><subject>Carbon</subject><subject>Carbon - chemistry</subject><subject>Catheter Ablation</subject><subject>Cercopithecus aethiops</subject><subject>Electron states</subject><subject>Electron transitions</subject><subject>Electronics</subject><subject>Energy gap</subject><subject>fluorescence</subject><subject>Joining</subject><subject>Luminescence</subject><subject>Materials science</subject><subject>mechanisms</subject><subject>Microscopy, Electron, Transmission</subject><subject>nanoparticles</subject><subject>Nanoparticles - chemistry</subject><subject>Nanostructure</subject><subject>Nitric Acid - chemistry</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Photoluminescence</subject><subject>Quantum Dots - chemistry</subject><subject>Spectrum Analysis</subject><subject>Surface chemistry</subject><subject>Surface Properties</subject><subject>Tuning</subject><subject>Vero Cells</subject><subject>X-Ray Diffraction</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1P20AQxVdVEYSPa4-VpV64OMx-e3uLUghFgYJC1eNqba-pqb2b7tpq8993USCquLSnkUa_9_RmHkLvMEwxADkzdW-mBDADDhLeoAnmBOcMFH-LJqAoz5VgxQE6jPERAJQAsY8OCOeFwgxP0NXtdz_4buxbZ2NlXWXz-9GZsrPZ3ITSu-zGOF_7IX7MVmNoTAJWgxlsdu5seNjkC7POkqJ1D8dorzFdtCfP8wh9vTi_n1_myy-Lz_PZMq94ipkbQayyBTBLC6lqLnEBUAGkdQoHVVUyVmFOS5ISksaKQhlZk0Yx0ZSmBHqETre-6-B_jjYOum9T9K4zzvoxaiykVBRwgf8DFYSRglGa0A-v0Ec_BpcO0URizhVL_07UdEtVwccYbKPXoe1N2GgM-qkQ_VSI3hWSBO-fbceyt_UOf2kgAWoL_Go7u_mHnZ59up79bZ5vtW0c7O-d1oQfWkgquf52s9BLfnexWshbfUn_AIyxo6U</recordid><startdate>20150301</startdate><enddate>20150301</enddate><creator>Bao, Lei</creator><creator>Liu, Cui</creator><creator>Zhang, Zhi-Ling</creator><creator>Pang, Dai-Wen</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope></search><sort><creationdate>20150301</creationdate><title>Photoluminescence-Tunable Carbon Nanodots: Surface-State Energy-Gap Tuning</title><author>Bao, Lei ; Liu, Cui ; Zhang, Zhi-Ling ; Pang, Dai-Wen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5140-a62e9e804e3879d571800c0062e6060ccb44c153b29142fe689a7d2f946fbab03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>bio-imaging</topic><topic>Carbon</topic><topic>Carbon - chemistry</topic><topic>Catheter Ablation</topic><topic>Cercopithecus aethiops</topic><topic>Electron states</topic><topic>Electron transitions</topic><topic>Electronics</topic><topic>Energy gap</topic><topic>fluorescence</topic><topic>Joining</topic><topic>Luminescence</topic><topic>Materials science</topic><topic>mechanisms</topic><topic>Microscopy, Electron, Transmission</topic><topic>nanoparticles</topic><topic>Nanoparticles - chemistry</topic><topic>Nanostructure</topic><topic>Nitric Acid - chemistry</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Photoluminescence</topic><topic>Quantum Dots - chemistry</topic><topic>Spectrum Analysis</topic><topic>Surface chemistry</topic><topic>Surface Properties</topic><topic>Tuning</topic><topic>Vero Cells</topic><topic>X-Ray Diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bao, Lei</creatorcontrib><creatorcontrib>Liu, Cui</creatorcontrib><creatorcontrib>Zhang, Zhi-Ling</creatorcontrib><creatorcontrib>Pang, Dai-Wen</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bao, Lei</au><au>Liu, Cui</au><au>Zhang, Zhi-Ling</au><au>Pang, Dai-Wen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photoluminescence-Tunable Carbon Nanodots: Surface-State Energy-Gap Tuning</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv. Mater</addtitle><date>2015-03-01</date><risdate>2015</risdate><volume>27</volume><issue>10</issue><spage>1663</spage><epage>1667</epage><pages>1663-1667</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>The photoluminescence of carbon nanodots (C‐dots) can be tuned by changing their surface chemistry or size because the photoluminescence is a function of the surface‐state electronic transitions. Increasing the degree of surface oxidation leads to a narrowing of the energy gap of the surface; meanwhile, larger C‐dots with an extensive π‐electron system, which can couple with surface electronic states, can also lead to a narrowing of the energy gap of the surface states.</abstract><cop>Germany</cop><pub>Blackwell Publishing Ltd</pub><pmid>25589141</pmid><doi>10.1002/adma.201405070</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2015-03, Vol.27 (10), p.1663-1667
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_1677930181
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Animals
bio-imaging
Carbon
Carbon - chemistry
Catheter Ablation
Cercopithecus aethiops
Electron states
Electron transitions
Electronics
Energy gap
fluorescence
Joining
Luminescence
Materials science
mechanisms
Microscopy, Electron, Transmission
nanoparticles
Nanoparticles - chemistry
Nanostructure
Nitric Acid - chemistry
Oxidation
Oxidation-Reduction
Photoluminescence
Quantum Dots - chemistry
Spectrum Analysis
Surface chemistry
Surface Properties
Tuning
Vero Cells
X-Ray Diffraction
title Photoluminescence-Tunable Carbon Nanodots: Surface-State Energy-Gap Tuning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T19%3A01%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photoluminescence-Tunable%20Carbon%20Nanodots:%20Surface-State%20Energy-Gap%20Tuning&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Bao,%20Lei&rft.date=2015-03-01&rft.volume=27&rft.issue=10&rft.spage=1663&rft.epage=1667&rft.pages=1663-1667&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.201405070&rft_dat=%3Cproquest_cross%3E2715594100%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2715594100&rft_id=info:pmid/25589141&rfr_iscdi=true