In situ UHVEM irradiation study of intrinsic point defect behavior in Si nanowire structures
Si nanowire‐based Tunnel‐Field Effect Transistor (TFET) characteristics are intensively studied as function of nanowire diameter and doping. A significant reduction of B diffusion with decreasing nanowire diameter is e.g. observed and attributed to reduced transient enhanced diffusion close to the n...
Gespeichert in:
Veröffentlicht in: | Physica status solidi. C 2015-03, Vol.12 (3), p.275-281 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 281 |
---|---|
container_issue | 3 |
container_start_page | 275 |
container_title | Physica status solidi. C |
container_volume | 12 |
creator | Vanhellemont, J. Anada, S. Nagase, T. Yasuda, H. Bender, H. Rooyackers, R. Vandooren, A. |
description | Si nanowire‐based Tunnel‐Field Effect Transistor (TFET) characteristics are intensively studied as function of nanowire diameter and doping. A significant reduction of B diffusion with decreasing nanowire diameter is e.g. observed and attributed to reduced transient enhanced diffusion close to the nanowire surface caused by the recombination and out‐diffusion of excess self‐interstitials. In an Ultra High Voltage Electron Microscope (UHVEM), the formation of self‐interstitial clusters can be studied in situ while varying e‐beam flux, irradiation temperature, impurity concentration and capping layers surrounding the nanowires.
Results are presented on {113}‐defect formation in Si nanowires with diameters between 40 and 500 nm. The Si nanowires are embedded in SiO2 and are etched into an epitaxial Si stack on a heavily As doped Si substrate. The top layer of the epitaxial stack is in situ B doped or B implanted. In situ UHVEM studies are performed on focused ion beam prepared cross‐section samples, irradiating with different fluxes of 2 MeV electrons between room temperature and 375 °C. A strong dependence of {113}‐defect formation on nanowire radius and doping is observed. The observations are compared with simulations based on quasi‐chemical reaction rate theory. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) |
doi_str_mv | 10.1002/pssc.201400100 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677928561</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3617711771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4580-57b1b721473b2fb6d7a799c9da1bb8fc558474f1d0af5957f0da35475b5f353d3</originalsourceid><addsrcrecordid>eNqFkMFPwjAUhxejiYhePTfx4mXYrmu7Hc2CQAJqgsDFpOm6NhZhxXYT-e8twRDjxdN7r-_7XppfFF0j2EMQJncb72UvgSiFMMwnUQdRBGNE0-Q09BlNYooJOo8uvF9CiAlEtBO9jmrgTdOC2XDenwDjnKiMaIwNz01b7YDVwNSNM7U3Emxs6EGltJINKNWb-DTWhT2YGlCL2m6NU8FzrWxap_xldKbFyqurn9qNZg_9l2IYj58Go-J-HMuUZDAmrEQlS1DKcJnoklZMsDyXeSVQWWZaEpKlLNWogkKTnDANK4FJykhJNCa4wt3o9nB34-xHq3zD18ZLtVqJWtnWc0QZy5OMUBTQmz_o0rauDr8LVNhDTLMsUL0DJZ313inNN86shdtxBPk-bL4Pmx_DDkJ-ELZmpXb_0Px5Oi1-u_HBNb5RX0dXuHdOGWaELx4HPJ0UdEHxnBf4G03jkiE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1661303688</pqid></control><display><type>article</type><title>In situ UHVEM irradiation study of intrinsic point defect behavior in Si nanowire structures</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Vanhellemont, J. ; Anada, S. ; Nagase, T. ; Yasuda, H. ; Bender, H. ; Rooyackers, R. ; Vandooren, A.</creator><creatorcontrib>Vanhellemont, J. ; Anada, S. ; Nagase, T. ; Yasuda, H. ; Bender, H. ; Rooyackers, R. ; Vandooren, A.</creatorcontrib><description>Si nanowire‐based Tunnel‐Field Effect Transistor (TFET) characteristics are intensively studied as function of nanowire diameter and doping. A significant reduction of B diffusion with decreasing nanowire diameter is e.g. observed and attributed to reduced transient enhanced diffusion close to the nanowire surface caused by the recombination and out‐diffusion of excess self‐interstitials. In an Ultra High Voltage Electron Microscope (UHVEM), the formation of self‐interstitial clusters can be studied in situ while varying e‐beam flux, irradiation temperature, impurity concentration and capping layers surrounding the nanowires.
Results are presented on {113}‐defect formation in Si nanowires with diameters between 40 and 500 nm. The Si nanowires are embedded in SiO2 and are etched into an epitaxial Si stack on a heavily As doped Si substrate. The top layer of the epitaxial stack is in situ B doped or B implanted. In situ UHVEM studies are performed on focused ion beam prepared cross‐section samples, irradiating with different fluxes of 2 MeV electrons between room temperature and 375 °C. A strong dependence of {113}‐defect formation on nanowire radius and doping is observed. The observations are compared with simulations based on quasi‐chemical reaction rate theory. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)</description><identifier>ISSN: 1862-6351</identifier><identifier>EISSN: 1610-1642</identifier><identifier>DOI: 10.1002/pssc.201400100</identifier><language>eng</language><publisher>Berlin: WILEY-VCH Verlag</publisher><subject>arsenic ; boron ; Doping ; Epitaxy ; Formations ; Irradiation ; nanowire ; Nanowires ; Self-interstitials ; Silicon ; Silicon substrates ; Stacks ; TFET ; UHVEM ; {113}-defect</subject><ispartof>Physica status solidi. C, 2015-03, Vol.12 (3), p.275-281</ispartof><rights>Copyright © 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4580-57b1b721473b2fb6d7a799c9da1bb8fc558474f1d0af5957f0da35475b5f353d3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpssc.201400100$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpssc.201400100$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Vanhellemont, J.</creatorcontrib><creatorcontrib>Anada, S.</creatorcontrib><creatorcontrib>Nagase, T.</creatorcontrib><creatorcontrib>Yasuda, H.</creatorcontrib><creatorcontrib>Bender, H.</creatorcontrib><creatorcontrib>Rooyackers, R.</creatorcontrib><creatorcontrib>Vandooren, A.</creatorcontrib><title>In situ UHVEM irradiation study of intrinsic point defect behavior in Si nanowire structures</title><title>Physica status solidi. C</title><addtitle>Phys. Status Solidi C</addtitle><description>Si nanowire‐based Tunnel‐Field Effect Transistor (TFET) characteristics are intensively studied as function of nanowire diameter and doping. A significant reduction of B diffusion with decreasing nanowire diameter is e.g. observed and attributed to reduced transient enhanced diffusion close to the nanowire surface caused by the recombination and out‐diffusion of excess self‐interstitials. In an Ultra High Voltage Electron Microscope (UHVEM), the formation of self‐interstitial clusters can be studied in situ while varying e‐beam flux, irradiation temperature, impurity concentration and capping layers surrounding the nanowires.
Results are presented on {113}‐defect formation in Si nanowires with diameters between 40 and 500 nm. The Si nanowires are embedded in SiO2 and are etched into an epitaxial Si stack on a heavily As doped Si substrate. The top layer of the epitaxial stack is in situ B doped or B implanted. In situ UHVEM studies are performed on focused ion beam prepared cross‐section samples, irradiating with different fluxes of 2 MeV electrons between room temperature and 375 °C. A strong dependence of {113}‐defect formation on nanowire radius and doping is observed. The observations are compared with simulations based on quasi‐chemical reaction rate theory. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)</description><subject>arsenic</subject><subject>boron</subject><subject>Doping</subject><subject>Epitaxy</subject><subject>Formations</subject><subject>Irradiation</subject><subject>nanowire</subject><subject>Nanowires</subject><subject>Self-interstitials</subject><subject>Silicon</subject><subject>Silicon substrates</subject><subject>Stacks</subject><subject>TFET</subject><subject>UHVEM</subject><subject>{113}-defect</subject><issn>1862-6351</issn><issn>1610-1642</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkMFPwjAUhxejiYhePTfx4mXYrmu7Hc2CQAJqgsDFpOm6NhZhxXYT-e8twRDjxdN7r-_7XppfFF0j2EMQJncb72UvgSiFMMwnUQdRBGNE0-Q09BlNYooJOo8uvF9CiAlEtBO9jmrgTdOC2XDenwDjnKiMaIwNz01b7YDVwNSNM7U3Emxs6EGltJINKNWb-DTWhT2YGlCL2m6NU8FzrWxap_xldKbFyqurn9qNZg_9l2IYj58Go-J-HMuUZDAmrEQlS1DKcJnoklZMsDyXeSVQWWZaEpKlLNWogkKTnDANK4FJykhJNCa4wt3o9nB34-xHq3zD18ZLtVqJWtnWc0QZy5OMUBTQmz_o0rauDr8LVNhDTLMsUL0DJZ313inNN86shdtxBPk-bL4Pmx_DDkJ-ELZmpXb_0Px5Oi1-u_HBNb5RX0dXuHdOGWaELx4HPJ0UdEHxnBf4G03jkiE</recordid><startdate>201503</startdate><enddate>201503</enddate><creator>Vanhellemont, J.</creator><creator>Anada, S.</creator><creator>Nagase, T.</creator><creator>Yasuda, H.</creator><creator>Bender, H.</creator><creator>Rooyackers, R.</creator><creator>Vandooren, A.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>201503</creationdate><title>In situ UHVEM irradiation study of intrinsic point defect behavior in Si nanowire structures</title><author>Vanhellemont, J. ; Anada, S. ; Nagase, T. ; Yasuda, H. ; Bender, H. ; Rooyackers, R. ; Vandooren, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4580-57b1b721473b2fb6d7a799c9da1bb8fc558474f1d0af5957f0da35475b5f353d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>arsenic</topic><topic>boron</topic><topic>Doping</topic><topic>Epitaxy</topic><topic>Formations</topic><topic>Irradiation</topic><topic>nanowire</topic><topic>Nanowires</topic><topic>Self-interstitials</topic><topic>Silicon</topic><topic>Silicon substrates</topic><topic>Stacks</topic><topic>TFET</topic><topic>UHVEM</topic><topic>{113}-defect</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vanhellemont, J.</creatorcontrib><creatorcontrib>Anada, S.</creatorcontrib><creatorcontrib>Nagase, T.</creatorcontrib><creatorcontrib>Yasuda, H.</creatorcontrib><creatorcontrib>Bender, H.</creatorcontrib><creatorcontrib>Rooyackers, R.</creatorcontrib><creatorcontrib>Vandooren, A.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica status solidi. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vanhellemont, J.</au><au>Anada, S.</au><au>Nagase, T.</au><au>Yasuda, H.</au><au>Bender, H.</au><au>Rooyackers, R.</au><au>Vandooren, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In situ UHVEM irradiation study of intrinsic point defect behavior in Si nanowire structures</atitle><jtitle>Physica status solidi. C</jtitle><addtitle>Phys. Status Solidi C</addtitle><date>2015-03</date><risdate>2015</risdate><volume>12</volume><issue>3</issue><spage>275</spage><epage>281</epage><pages>275-281</pages><issn>1862-6351</issn><eissn>1610-1642</eissn><abstract>Si nanowire‐based Tunnel‐Field Effect Transistor (TFET) characteristics are intensively studied as function of nanowire diameter and doping. A significant reduction of B diffusion with decreasing nanowire diameter is e.g. observed and attributed to reduced transient enhanced diffusion close to the nanowire surface caused by the recombination and out‐diffusion of excess self‐interstitials. In an Ultra High Voltage Electron Microscope (UHVEM), the formation of self‐interstitial clusters can be studied in situ while varying e‐beam flux, irradiation temperature, impurity concentration and capping layers surrounding the nanowires.
Results are presented on {113}‐defect formation in Si nanowires with diameters between 40 and 500 nm. The Si nanowires are embedded in SiO2 and are etched into an epitaxial Si stack on a heavily As doped Si substrate. The top layer of the epitaxial stack is in situ B doped or B implanted. In situ UHVEM studies are performed on focused ion beam prepared cross‐section samples, irradiating with different fluxes of 2 MeV electrons between room temperature and 375 °C. A strong dependence of {113}‐defect formation on nanowire radius and doping is observed. The observations are compared with simulations based on quasi‐chemical reaction rate theory. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)</abstract><cop>Berlin</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/pssc.201400100</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1862-6351 |
ispartof | Physica status solidi. C, 2015-03, Vol.12 (3), p.275-281 |
issn | 1862-6351 1610-1642 |
language | eng |
recordid | cdi_proquest_miscellaneous_1677928561 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | arsenic boron Doping Epitaxy Formations Irradiation nanowire Nanowires Self-interstitials Silicon Silicon substrates Stacks TFET UHVEM {113}-defect |
title | In situ UHVEM irradiation study of intrinsic point defect behavior in Si nanowire structures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T18%3A06%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20situ%20UHVEM%20irradiation%20study%20of%20intrinsic%20point%20defect%20behavior%20in%20Si%20nanowire%20structures&rft.jtitle=Physica%20status%20solidi.%20C&rft.au=Vanhellemont,%20J.&rft.date=2015-03&rft.volume=12&rft.issue=3&rft.spage=275&rft.epage=281&rft.pages=275-281&rft.issn=1862-6351&rft.eissn=1610-1642&rft_id=info:doi/10.1002/pssc.201400100&rft_dat=%3Cproquest_cross%3E3617711771%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1661303688&rft_id=info:pmid/&rfr_iscdi=true |