In situ UHVEM irradiation study of intrinsic point defect behavior in Si nanowire structures

Si nanowire‐based Tunnel‐Field Effect Transistor (TFET) characteristics are intensively studied as function of nanowire diameter and doping. A significant reduction of B diffusion with decreasing nanowire diameter is e.g. observed and attributed to reduced transient enhanced diffusion close to the n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica status solidi. C 2015-03, Vol.12 (3), p.275-281
Hauptverfasser: Vanhellemont, J., Anada, S., Nagase, T., Yasuda, H., Bender, H., Rooyackers, R., Vandooren, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 281
container_issue 3
container_start_page 275
container_title Physica status solidi. C
container_volume 12
creator Vanhellemont, J.
Anada, S.
Nagase, T.
Yasuda, H.
Bender, H.
Rooyackers, R.
Vandooren, A.
description Si nanowire‐based Tunnel‐Field Effect Transistor (TFET) characteristics are intensively studied as function of nanowire diameter and doping. A significant reduction of B diffusion with decreasing nanowire diameter is e.g. observed and attributed to reduced transient enhanced diffusion close to the nanowire surface caused by the recombination and out‐diffusion of excess self‐interstitials. In an Ultra High Voltage Electron Microscope (UHVEM), the formation of self‐interstitial clusters can be studied in situ while varying e‐beam flux, irradiation temperature, impurity concentration and capping layers surrounding the nanowires. Results are presented on {113}‐defect formation in Si nanowires with diameters between 40 and 500 nm. The Si nanowires are embedded in SiO2 and are etched into an epitaxial Si stack on a heavily As doped Si substrate. The top layer of the epitaxial stack is in situ B doped or B implanted. In situ UHVEM studies are performed on focused ion beam prepared cross‐section samples, irradiating with different fluxes of 2 MeV electrons between room temperature and 375 °C. A strong dependence of {113}‐defect formation on nanowire radius and doping is observed. The observations are compared with simulations based on quasi‐chemical reaction rate theory. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
doi_str_mv 10.1002/pssc.201400100
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677928561</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3617711771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4580-57b1b721473b2fb6d7a799c9da1bb8fc558474f1d0af5957f0da35475b5f353d3</originalsourceid><addsrcrecordid>eNqFkMFPwjAUhxejiYhePTfx4mXYrmu7Hc2CQAJqgsDFpOm6NhZhxXYT-e8twRDjxdN7r-_7XppfFF0j2EMQJncb72UvgSiFMMwnUQdRBGNE0-Q09BlNYooJOo8uvF9CiAlEtBO9jmrgTdOC2XDenwDjnKiMaIwNz01b7YDVwNSNM7U3Emxs6EGltJINKNWb-DTWhT2YGlCL2m6NU8FzrWxap_xldKbFyqurn9qNZg_9l2IYj58Go-J-HMuUZDAmrEQlS1DKcJnoklZMsDyXeSVQWWZaEpKlLNWogkKTnDANK4FJykhJNCa4wt3o9nB34-xHq3zD18ZLtVqJWtnWc0QZy5OMUBTQmz_o0rauDr8LVNhDTLMsUL0DJZ313inNN86shdtxBPk-bL4Pmx_DDkJ-ELZmpXb_0Px5Oi1-u_HBNb5RX0dXuHdOGWaELx4HPJ0UdEHxnBf4G03jkiE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1661303688</pqid></control><display><type>article</type><title>In situ UHVEM irradiation study of intrinsic point defect behavior in Si nanowire structures</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Vanhellemont, J. ; Anada, S. ; Nagase, T. ; Yasuda, H. ; Bender, H. ; Rooyackers, R. ; Vandooren, A.</creator><creatorcontrib>Vanhellemont, J. ; Anada, S. ; Nagase, T. ; Yasuda, H. ; Bender, H. ; Rooyackers, R. ; Vandooren, A.</creatorcontrib><description>Si nanowire‐based Tunnel‐Field Effect Transistor (TFET) characteristics are intensively studied as function of nanowire diameter and doping. A significant reduction of B diffusion with decreasing nanowire diameter is e.g. observed and attributed to reduced transient enhanced diffusion close to the nanowire surface caused by the recombination and out‐diffusion of excess self‐interstitials. In an Ultra High Voltage Electron Microscope (UHVEM), the formation of self‐interstitial clusters can be studied in situ while varying e‐beam flux, irradiation temperature, impurity concentration and capping layers surrounding the nanowires. Results are presented on {113}‐defect formation in Si nanowires with diameters between 40 and 500 nm. The Si nanowires are embedded in SiO2 and are etched into an epitaxial Si stack on a heavily As doped Si substrate. The top layer of the epitaxial stack is in situ B doped or B implanted. In situ UHVEM studies are performed on focused ion beam prepared cross‐section samples, irradiating with different fluxes of 2 MeV electrons between room temperature and 375 °C. A strong dependence of {113}‐defect formation on nanowire radius and doping is observed. The observations are compared with simulations based on quasi‐chemical reaction rate theory. (© 2015 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</description><identifier>ISSN: 1862-6351</identifier><identifier>EISSN: 1610-1642</identifier><identifier>DOI: 10.1002/pssc.201400100</identifier><language>eng</language><publisher>Berlin: WILEY-VCH Verlag</publisher><subject>arsenic ; boron ; Doping ; Epitaxy ; Formations ; Irradiation ; nanowire ; Nanowires ; Self-interstitials ; Silicon ; Silicon substrates ; Stacks ; TFET ; UHVEM ; {113}-defect</subject><ispartof>Physica status solidi. C, 2015-03, Vol.12 (3), p.275-281</ispartof><rights>Copyright © 2015 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Copyright © 2015 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4580-57b1b721473b2fb6d7a799c9da1bb8fc558474f1d0af5957f0da35475b5f353d3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpssc.201400100$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpssc.201400100$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Vanhellemont, J.</creatorcontrib><creatorcontrib>Anada, S.</creatorcontrib><creatorcontrib>Nagase, T.</creatorcontrib><creatorcontrib>Yasuda, H.</creatorcontrib><creatorcontrib>Bender, H.</creatorcontrib><creatorcontrib>Rooyackers, R.</creatorcontrib><creatorcontrib>Vandooren, A.</creatorcontrib><title>In situ UHVEM irradiation study of intrinsic point defect behavior in Si nanowire structures</title><title>Physica status solidi. C</title><addtitle>Phys. Status Solidi C</addtitle><description>Si nanowire‐based Tunnel‐Field Effect Transistor (TFET) characteristics are intensively studied as function of nanowire diameter and doping. A significant reduction of B diffusion with decreasing nanowire diameter is e.g. observed and attributed to reduced transient enhanced diffusion close to the nanowire surface caused by the recombination and out‐diffusion of excess self‐interstitials. In an Ultra High Voltage Electron Microscope (UHVEM), the formation of self‐interstitial clusters can be studied in situ while varying e‐beam flux, irradiation temperature, impurity concentration and capping layers surrounding the nanowires. Results are presented on {113}‐defect formation in Si nanowires with diameters between 40 and 500 nm. The Si nanowires are embedded in SiO2 and are etched into an epitaxial Si stack on a heavily As doped Si substrate. The top layer of the epitaxial stack is in situ B doped or B implanted. In situ UHVEM studies are performed on focused ion beam prepared cross‐section samples, irradiating with different fluxes of 2 MeV electrons between room temperature and 375 °C. A strong dependence of {113}‐defect formation on nanowire radius and doping is observed. The observations are compared with simulations based on quasi‐chemical reaction rate theory. (© 2015 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</description><subject>arsenic</subject><subject>boron</subject><subject>Doping</subject><subject>Epitaxy</subject><subject>Formations</subject><subject>Irradiation</subject><subject>nanowire</subject><subject>Nanowires</subject><subject>Self-interstitials</subject><subject>Silicon</subject><subject>Silicon substrates</subject><subject>Stacks</subject><subject>TFET</subject><subject>UHVEM</subject><subject>{113}-defect</subject><issn>1862-6351</issn><issn>1610-1642</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkMFPwjAUhxejiYhePTfx4mXYrmu7Hc2CQAJqgsDFpOm6NhZhxXYT-e8twRDjxdN7r-_7XppfFF0j2EMQJncb72UvgSiFMMwnUQdRBGNE0-Q09BlNYooJOo8uvF9CiAlEtBO9jmrgTdOC2XDenwDjnKiMaIwNz01b7YDVwNSNM7U3Emxs6EGltJINKNWb-DTWhT2YGlCL2m6NU8FzrWxap_xldKbFyqurn9qNZg_9l2IYj58Go-J-HMuUZDAmrEQlS1DKcJnoklZMsDyXeSVQWWZaEpKlLNWogkKTnDANK4FJykhJNCa4wt3o9nB34-xHq3zD18ZLtVqJWtnWc0QZy5OMUBTQmz_o0rauDr8LVNhDTLMsUL0DJZ313inNN86shdtxBPk-bL4Pmx_DDkJ-ELZmpXb_0Px5Oi1-u_HBNb5RX0dXuHdOGWaELx4HPJ0UdEHxnBf4G03jkiE</recordid><startdate>201503</startdate><enddate>201503</enddate><creator>Vanhellemont, J.</creator><creator>Anada, S.</creator><creator>Nagase, T.</creator><creator>Yasuda, H.</creator><creator>Bender, H.</creator><creator>Rooyackers, R.</creator><creator>Vandooren, A.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>201503</creationdate><title>In situ UHVEM irradiation study of intrinsic point defect behavior in Si nanowire structures</title><author>Vanhellemont, J. ; Anada, S. ; Nagase, T. ; Yasuda, H. ; Bender, H. ; Rooyackers, R. ; Vandooren, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4580-57b1b721473b2fb6d7a799c9da1bb8fc558474f1d0af5957f0da35475b5f353d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>arsenic</topic><topic>boron</topic><topic>Doping</topic><topic>Epitaxy</topic><topic>Formations</topic><topic>Irradiation</topic><topic>nanowire</topic><topic>Nanowires</topic><topic>Self-interstitials</topic><topic>Silicon</topic><topic>Silicon substrates</topic><topic>Stacks</topic><topic>TFET</topic><topic>UHVEM</topic><topic>{113}-defect</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vanhellemont, J.</creatorcontrib><creatorcontrib>Anada, S.</creatorcontrib><creatorcontrib>Nagase, T.</creatorcontrib><creatorcontrib>Yasuda, H.</creatorcontrib><creatorcontrib>Bender, H.</creatorcontrib><creatorcontrib>Rooyackers, R.</creatorcontrib><creatorcontrib>Vandooren, A.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica status solidi. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vanhellemont, J.</au><au>Anada, S.</au><au>Nagase, T.</au><au>Yasuda, H.</au><au>Bender, H.</au><au>Rooyackers, R.</au><au>Vandooren, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In situ UHVEM irradiation study of intrinsic point defect behavior in Si nanowire structures</atitle><jtitle>Physica status solidi. C</jtitle><addtitle>Phys. Status Solidi C</addtitle><date>2015-03</date><risdate>2015</risdate><volume>12</volume><issue>3</issue><spage>275</spage><epage>281</epage><pages>275-281</pages><issn>1862-6351</issn><eissn>1610-1642</eissn><abstract>Si nanowire‐based Tunnel‐Field Effect Transistor (TFET) characteristics are intensively studied as function of nanowire diameter and doping. A significant reduction of B diffusion with decreasing nanowire diameter is e.g. observed and attributed to reduced transient enhanced diffusion close to the nanowire surface caused by the recombination and out‐diffusion of excess self‐interstitials. In an Ultra High Voltage Electron Microscope (UHVEM), the formation of self‐interstitial clusters can be studied in situ while varying e‐beam flux, irradiation temperature, impurity concentration and capping layers surrounding the nanowires. Results are presented on {113}‐defect formation in Si nanowires with diameters between 40 and 500 nm. The Si nanowires are embedded in SiO2 and are etched into an epitaxial Si stack on a heavily As doped Si substrate. The top layer of the epitaxial stack is in situ B doped or B implanted. In situ UHVEM studies are performed on focused ion beam prepared cross‐section samples, irradiating with different fluxes of 2 MeV electrons between room temperature and 375 °C. A strong dependence of {113}‐defect formation on nanowire radius and doping is observed. The observations are compared with simulations based on quasi‐chemical reaction rate theory. (© 2015 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</abstract><cop>Berlin</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/pssc.201400100</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1862-6351
ispartof Physica status solidi. C, 2015-03, Vol.12 (3), p.275-281
issn 1862-6351
1610-1642
language eng
recordid cdi_proquest_miscellaneous_1677928561
source Wiley Online Library Journals Frontfile Complete
subjects arsenic
boron
Doping
Epitaxy
Formations
Irradiation
nanowire
Nanowires
Self-interstitials
Silicon
Silicon substrates
Stacks
TFET
UHVEM
{113}-defect
title In situ UHVEM irradiation study of intrinsic point defect behavior in Si nanowire structures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T18%3A06%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20situ%20UHVEM%20irradiation%20study%20of%20intrinsic%20point%20defect%20behavior%20in%20Si%20nanowire%20structures&rft.jtitle=Physica%20status%20solidi.%20C&rft.au=Vanhellemont,%20J.&rft.date=2015-03&rft.volume=12&rft.issue=3&rft.spage=275&rft.epage=281&rft.pages=275-281&rft.issn=1862-6351&rft.eissn=1610-1642&rft_id=info:doi/10.1002/pssc.201400100&rft_dat=%3Cproquest_cross%3E3617711771%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1661303688&rft_id=info:pmid/&rfr_iscdi=true