Existence and Symmetry of Ground States to the Boussinesq abcd Systems
We consider a four-parameter family of Boussinesq systems derived by Bona et al. (J Nonlinear Sci 12:283–318, 2002 ). We establish the existence of the ground states which are solitary waves minimizing the action functional of the systems. We further show that in the presence of large surface tensio...
Gespeichert in:
Veröffentlicht in: | Archive for rational mechanics and analysis 2015-05, Vol.216 (2), p.569-591 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 591 |
---|---|
container_issue | 2 |
container_start_page | 569 |
container_title | Archive for rational mechanics and analysis |
container_volume | 216 |
creator | Bao, Ellen ShiTing Chen, Robin Ming Liu, Qing |
description | We consider a four-parameter family of Boussinesq systems derived by Bona et al. (J Nonlinear Sci 12:283–318,
2002
). We establish the existence of the ground states which are solitary waves minimizing the action functional of the systems. We further show that in the presence of large surface tension the ground states are even up to translation. |
doi_str_mv | 10.1007/s00205-014-0814-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677928486</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3612792091</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-1c9ea7ed85eb8cc087ca5f85849abfe04b1a9090dc520047f35cc2620910afab3</originalsourceid><addsrcrecordid>eNp1kMFKAzEQhoMoWKsP4C3gxcvqJLvZJEctbRUKHtRzyKazuqW72yYp2Lc3y3oQwcsMM3zfMPyEXDO4YwDyPgBwEBmwIgOVCjshE1bkPINS5qdkAgB5pgWX5-QihM0w8ryckMX8qwkRO4fUdmv6emxbjP5I-5oufX8YVtFGDDT2NH4ifewPITQdhj21lRuEZLfhkpzVdhvw6qdPyfti_jZ7ylYvy-fZwypzBdMxY06jlbhWAivlHCjprKiVUIW2VY1QVMxq0LB2ggMUss6Fc7zkoBnY2lb5lNyOd3e-3x8wRNM2weF2aztMnxlWSqm5KlSZ0Js_6KY_-C59l6gSclYyIRPFRsr5PgSPtdn5prX-aBiYIVkzJmtSsmZI1rDk8NEJie0-0P-6_K_0DaqyemI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1660316157</pqid></control><display><type>article</type><title>Existence and Symmetry of Ground States to the Boussinesq abcd Systems</title><source>Springer Nature - Complete Springer Journals</source><creator>Bao, Ellen ShiTing ; Chen, Robin Ming ; Liu, Qing</creator><creatorcontrib>Bao, Ellen ShiTing ; Chen, Robin Ming ; Liu, Qing</creatorcontrib><description>We consider a four-parameter family of Boussinesq systems derived by Bona et al. (J Nonlinear Sci 12:283–318,
2002
). We establish the existence of the ground states which are solitary waves minimizing the action functional of the systems. We further show that in the presence of large surface tension the ground states are even up to translation.</description><identifier>ISSN: 0003-9527</identifier><identifier>EISSN: 1432-0673</identifier><identifier>DOI: 10.1007/s00205-014-0814-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Archives ; Boussinesq equations ; Classical Mechanics ; Complex Systems ; Fluid- and Aerodynamics ; Ground state ; Mathematical and Computational Physics ; Nonlinearity ; Physics ; Physics and Astronomy ; Solitary waves ; Surface tension ; Symmetry ; Theoretical ; Translations</subject><ispartof>Archive for rational mechanics and analysis, 2015-05, Vol.216 (2), p.569-591</ispartof><rights>Springer-Verlag Berlin Heidelberg 2014</rights><rights>Springer-Verlag Berlin Heidelberg 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-1c9ea7ed85eb8cc087ca5f85849abfe04b1a9090dc520047f35cc2620910afab3</citedby><cites>FETCH-LOGICAL-c419t-1c9ea7ed85eb8cc087ca5f85849abfe04b1a9090dc520047f35cc2620910afab3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00205-014-0814-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00205-014-0814-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Bao, Ellen ShiTing</creatorcontrib><creatorcontrib>Chen, Robin Ming</creatorcontrib><creatorcontrib>Liu, Qing</creatorcontrib><title>Existence and Symmetry of Ground States to the Boussinesq abcd Systems</title><title>Archive for rational mechanics and analysis</title><addtitle>Arch Rational Mech Anal</addtitle><description>We consider a four-parameter family of Boussinesq systems derived by Bona et al. (J Nonlinear Sci 12:283–318,
2002
). We establish the existence of the ground states which are solitary waves minimizing the action functional of the systems. We further show that in the presence of large surface tension the ground states are even up to translation.</description><subject>Archives</subject><subject>Boussinesq equations</subject><subject>Classical Mechanics</subject><subject>Complex Systems</subject><subject>Fluid- and Aerodynamics</subject><subject>Ground state</subject><subject>Mathematical and Computational Physics</subject><subject>Nonlinearity</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Solitary waves</subject><subject>Surface tension</subject><subject>Symmetry</subject><subject>Theoretical</subject><subject>Translations</subject><issn>0003-9527</issn><issn>1432-0673</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kMFKAzEQhoMoWKsP4C3gxcvqJLvZJEctbRUKHtRzyKazuqW72yYp2Lc3y3oQwcsMM3zfMPyEXDO4YwDyPgBwEBmwIgOVCjshE1bkPINS5qdkAgB5pgWX5-QihM0w8ryckMX8qwkRO4fUdmv6emxbjP5I-5oufX8YVtFGDDT2NH4ifewPITQdhj21lRuEZLfhkpzVdhvw6qdPyfti_jZ7ylYvy-fZwypzBdMxY06jlbhWAivlHCjprKiVUIW2VY1QVMxq0LB2ggMUss6Fc7zkoBnY2lb5lNyOd3e-3x8wRNM2weF2aztMnxlWSqm5KlSZ0Js_6KY_-C59l6gSclYyIRPFRsr5PgSPtdn5prX-aBiYIVkzJmtSsmZI1rDk8NEJie0-0P-6_K_0DaqyemI</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>Bao, Ellen ShiTing</creator><creator>Chen, Robin Ming</creator><creator>Liu, Qing</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20150501</creationdate><title>Existence and Symmetry of Ground States to the Boussinesq abcd Systems</title><author>Bao, Ellen ShiTing ; Chen, Robin Ming ; Liu, Qing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-1c9ea7ed85eb8cc087ca5f85849abfe04b1a9090dc520047f35cc2620910afab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Archives</topic><topic>Boussinesq equations</topic><topic>Classical Mechanics</topic><topic>Complex Systems</topic><topic>Fluid- and Aerodynamics</topic><topic>Ground state</topic><topic>Mathematical and Computational Physics</topic><topic>Nonlinearity</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Solitary waves</topic><topic>Surface tension</topic><topic>Symmetry</topic><topic>Theoretical</topic><topic>Translations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bao, Ellen ShiTing</creatorcontrib><creatorcontrib>Chen, Robin Ming</creatorcontrib><creatorcontrib>Liu, Qing</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Archive for rational mechanics and analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bao, Ellen ShiTing</au><au>Chen, Robin Ming</au><au>Liu, Qing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Existence and Symmetry of Ground States to the Boussinesq abcd Systems</atitle><jtitle>Archive for rational mechanics and analysis</jtitle><stitle>Arch Rational Mech Anal</stitle><date>2015-05-01</date><risdate>2015</risdate><volume>216</volume><issue>2</issue><spage>569</spage><epage>591</epage><pages>569-591</pages><issn>0003-9527</issn><eissn>1432-0673</eissn><abstract>We consider a four-parameter family of Boussinesq systems derived by Bona et al. (J Nonlinear Sci 12:283–318,
2002
). We establish the existence of the ground states which are solitary waves minimizing the action functional of the systems. We further show that in the presence of large surface tension the ground states are even up to translation.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00205-014-0814-1</doi><tpages>23</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-9527 |
ispartof | Archive for rational mechanics and analysis, 2015-05, Vol.216 (2), p.569-591 |
issn | 0003-9527 1432-0673 |
language | eng |
recordid | cdi_proquest_miscellaneous_1677928486 |
source | Springer Nature - Complete Springer Journals |
subjects | Archives Boussinesq equations Classical Mechanics Complex Systems Fluid- and Aerodynamics Ground state Mathematical and Computational Physics Nonlinearity Physics Physics and Astronomy Solitary waves Surface tension Symmetry Theoretical Translations |
title | Existence and Symmetry of Ground States to the Boussinesq abcd Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T21%3A20%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Existence%20and%20Symmetry%20of%20Ground%20States%20to%20the%20Boussinesq%20abcd%20Systems&rft.jtitle=Archive%20for%20rational%20mechanics%20and%20analysis&rft.au=Bao,%20Ellen%20ShiTing&rft.date=2015-05-01&rft.volume=216&rft.issue=2&rft.spage=569&rft.epage=591&rft.pages=569-591&rft.issn=0003-9527&rft.eissn=1432-0673&rft_id=info:doi/10.1007/s00205-014-0814-1&rft_dat=%3Cproquest_cross%3E3612792091%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1660316157&rft_id=info:pmid/&rfr_iscdi=true |