Existence and Symmetry of Ground States to the Boussinesq abcd Systems

We consider a four-parameter family of Boussinesq systems derived by Bona et al. (J Nonlinear Sci 12:283–318, 2002 ). We establish the existence of the ground states which are solitary waves minimizing the action functional of the systems. We further show that in the presence of large surface tensio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archive for rational mechanics and analysis 2015-05, Vol.216 (2), p.569-591
Hauptverfasser: Bao, Ellen ShiTing, Chen, Robin Ming, Liu, Qing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 591
container_issue 2
container_start_page 569
container_title Archive for rational mechanics and analysis
container_volume 216
creator Bao, Ellen ShiTing
Chen, Robin Ming
Liu, Qing
description We consider a four-parameter family of Boussinesq systems derived by Bona et al. (J Nonlinear Sci 12:283–318, 2002 ). We establish the existence of the ground states which are solitary waves minimizing the action functional of the systems. We further show that in the presence of large surface tension the ground states are even up to translation.
doi_str_mv 10.1007/s00205-014-0814-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677928486</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3612792091</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-1c9ea7ed85eb8cc087ca5f85849abfe04b1a9090dc520047f35cc2620910afab3</originalsourceid><addsrcrecordid>eNp1kMFKAzEQhoMoWKsP4C3gxcvqJLvZJEctbRUKHtRzyKazuqW72yYp2Lc3y3oQwcsMM3zfMPyEXDO4YwDyPgBwEBmwIgOVCjshE1bkPINS5qdkAgB5pgWX5-QihM0w8ryckMX8qwkRO4fUdmv6emxbjP5I-5oufX8YVtFGDDT2NH4ifewPITQdhj21lRuEZLfhkpzVdhvw6qdPyfti_jZ7ylYvy-fZwypzBdMxY06jlbhWAivlHCjprKiVUIW2VY1QVMxq0LB2ggMUss6Fc7zkoBnY2lb5lNyOd3e-3x8wRNM2weF2aztMnxlWSqm5KlSZ0Js_6KY_-C59l6gSclYyIRPFRsr5PgSPtdn5prX-aBiYIVkzJmtSsmZI1rDk8NEJie0-0P-6_K_0DaqyemI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1660316157</pqid></control><display><type>article</type><title>Existence and Symmetry of Ground States to the Boussinesq abcd Systems</title><source>Springer Nature - Complete Springer Journals</source><creator>Bao, Ellen ShiTing ; Chen, Robin Ming ; Liu, Qing</creator><creatorcontrib>Bao, Ellen ShiTing ; Chen, Robin Ming ; Liu, Qing</creatorcontrib><description>We consider a four-parameter family of Boussinesq systems derived by Bona et al. (J Nonlinear Sci 12:283–318, 2002 ). We establish the existence of the ground states which are solitary waves minimizing the action functional of the systems. We further show that in the presence of large surface tension the ground states are even up to translation.</description><identifier>ISSN: 0003-9527</identifier><identifier>EISSN: 1432-0673</identifier><identifier>DOI: 10.1007/s00205-014-0814-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Archives ; Boussinesq equations ; Classical Mechanics ; Complex Systems ; Fluid- and Aerodynamics ; Ground state ; Mathematical and Computational Physics ; Nonlinearity ; Physics ; Physics and Astronomy ; Solitary waves ; Surface tension ; Symmetry ; Theoretical ; Translations</subject><ispartof>Archive for rational mechanics and analysis, 2015-05, Vol.216 (2), p.569-591</ispartof><rights>Springer-Verlag Berlin Heidelberg 2014</rights><rights>Springer-Verlag Berlin Heidelberg 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-1c9ea7ed85eb8cc087ca5f85849abfe04b1a9090dc520047f35cc2620910afab3</citedby><cites>FETCH-LOGICAL-c419t-1c9ea7ed85eb8cc087ca5f85849abfe04b1a9090dc520047f35cc2620910afab3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00205-014-0814-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00205-014-0814-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Bao, Ellen ShiTing</creatorcontrib><creatorcontrib>Chen, Robin Ming</creatorcontrib><creatorcontrib>Liu, Qing</creatorcontrib><title>Existence and Symmetry of Ground States to the Boussinesq abcd Systems</title><title>Archive for rational mechanics and analysis</title><addtitle>Arch Rational Mech Anal</addtitle><description>We consider a four-parameter family of Boussinesq systems derived by Bona et al. (J Nonlinear Sci 12:283–318, 2002 ). We establish the existence of the ground states which are solitary waves minimizing the action functional of the systems. We further show that in the presence of large surface tension the ground states are even up to translation.</description><subject>Archives</subject><subject>Boussinesq equations</subject><subject>Classical Mechanics</subject><subject>Complex Systems</subject><subject>Fluid- and Aerodynamics</subject><subject>Ground state</subject><subject>Mathematical and Computational Physics</subject><subject>Nonlinearity</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Solitary waves</subject><subject>Surface tension</subject><subject>Symmetry</subject><subject>Theoretical</subject><subject>Translations</subject><issn>0003-9527</issn><issn>1432-0673</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kMFKAzEQhoMoWKsP4C3gxcvqJLvZJEctbRUKHtRzyKazuqW72yYp2Lc3y3oQwcsMM3zfMPyEXDO4YwDyPgBwEBmwIgOVCjshE1bkPINS5qdkAgB5pgWX5-QihM0w8ryckMX8qwkRO4fUdmv6emxbjP5I-5oufX8YVtFGDDT2NH4ifewPITQdhj21lRuEZLfhkpzVdhvw6qdPyfti_jZ7ylYvy-fZwypzBdMxY06jlbhWAivlHCjprKiVUIW2VY1QVMxq0LB2ggMUss6Fc7zkoBnY2lb5lNyOd3e-3x8wRNM2weF2aztMnxlWSqm5KlSZ0Js_6KY_-C59l6gSclYyIRPFRsr5PgSPtdn5prX-aBiYIVkzJmtSsmZI1rDk8NEJie0-0P-6_K_0DaqyemI</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>Bao, Ellen ShiTing</creator><creator>Chen, Robin Ming</creator><creator>Liu, Qing</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20150501</creationdate><title>Existence and Symmetry of Ground States to the Boussinesq abcd Systems</title><author>Bao, Ellen ShiTing ; Chen, Robin Ming ; Liu, Qing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-1c9ea7ed85eb8cc087ca5f85849abfe04b1a9090dc520047f35cc2620910afab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Archives</topic><topic>Boussinesq equations</topic><topic>Classical Mechanics</topic><topic>Complex Systems</topic><topic>Fluid- and Aerodynamics</topic><topic>Ground state</topic><topic>Mathematical and Computational Physics</topic><topic>Nonlinearity</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Solitary waves</topic><topic>Surface tension</topic><topic>Symmetry</topic><topic>Theoretical</topic><topic>Translations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bao, Ellen ShiTing</creatorcontrib><creatorcontrib>Chen, Robin Ming</creatorcontrib><creatorcontrib>Liu, Qing</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Archive for rational mechanics and analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bao, Ellen ShiTing</au><au>Chen, Robin Ming</au><au>Liu, Qing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Existence and Symmetry of Ground States to the Boussinesq abcd Systems</atitle><jtitle>Archive for rational mechanics and analysis</jtitle><stitle>Arch Rational Mech Anal</stitle><date>2015-05-01</date><risdate>2015</risdate><volume>216</volume><issue>2</issue><spage>569</spage><epage>591</epage><pages>569-591</pages><issn>0003-9527</issn><eissn>1432-0673</eissn><abstract>We consider a four-parameter family of Boussinesq systems derived by Bona et al. (J Nonlinear Sci 12:283–318, 2002 ). We establish the existence of the ground states which are solitary waves minimizing the action functional of the systems. We further show that in the presence of large surface tension the ground states are even up to translation.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00205-014-0814-1</doi><tpages>23</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-9527
ispartof Archive for rational mechanics and analysis, 2015-05, Vol.216 (2), p.569-591
issn 0003-9527
1432-0673
language eng
recordid cdi_proquest_miscellaneous_1677928486
source Springer Nature - Complete Springer Journals
subjects Archives
Boussinesq equations
Classical Mechanics
Complex Systems
Fluid- and Aerodynamics
Ground state
Mathematical and Computational Physics
Nonlinearity
Physics
Physics and Astronomy
Solitary waves
Surface tension
Symmetry
Theoretical
Translations
title Existence and Symmetry of Ground States to the Boussinesq abcd Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T21%3A20%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Existence%20and%20Symmetry%20of%20Ground%20States%20to%20the%20Boussinesq%20abcd%20Systems&rft.jtitle=Archive%20for%20rational%20mechanics%20and%20analysis&rft.au=Bao,%20Ellen%20ShiTing&rft.date=2015-05-01&rft.volume=216&rft.issue=2&rft.spage=569&rft.epage=591&rft.pages=569-591&rft.issn=0003-9527&rft.eissn=1432-0673&rft_id=info:doi/10.1007/s00205-014-0814-1&rft_dat=%3Cproquest_cross%3E3612792091%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1660316157&rft_id=info:pmid/&rfr_iscdi=true