Identification of Influential Sea Surface Temperature Locations and Predicting Streamflow for Six Months Using Bayesian Machine Learning Regression
Sea surface temperature (SST) has significant influence in the hydrological cycle and affects the discharge in the stream. SST is an atmospheric circulation indicator which provides the predictive information about the hydrologic variability in the region around the world. Use of right location of S...
Gespeichert in:
Veröffentlicht in: | Journal of water resource and protection 2015-02, Vol.7 (3), p.197-197 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!