Functional data analysis view of functional near infrared spectroscopy data
Functional near infrared spectroscopy (fNIRS) is a powerful tool for the study of oxygenation and hemodynamics of living tissues. Despite the continuous nature of the processes generating the data, analysis of fNIRS data has been limited to discrete-time methods. We propose a technique, namely funct...
Gespeichert in:
Veröffentlicht in: | Journal of biomedical optics 2013-11, Vol.18 (11), p.117007-117007 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 117007 |
---|---|
container_issue | 11 |
container_start_page | 117007 |
container_title | Journal of biomedical optics |
container_volume | 18 |
creator | Barati, Zeinab Zakeri, Issa Pourrezaei, Kambiz |
description | Functional near infrared spectroscopy (fNIRS) is a powerful tool for the study of oxygenation and hemodynamics of living tissues. Despite the continuous nature of the processes generating the data, analysis of fNIRS data has been limited to discrete-time methods. We propose a technique, namely functional data analysis (fDA), that converts discrete samples to continuous curves. We used fNIRS data collected on forehead during a cold pressor test (CPT) from 20 healthy subjects. Using functional principal component analysis, oxyhemoglobin (HbO2) and deoxyhemoglobin (Hb) curves were decomposed into several components based on variability across the subjects. Each component corresponded to an experimental condition and provided qualitative and quantitative information of the shape and weight of that component. Furthermore, we applied functional canonical correlation analysis to investigate the interaction between Hb and HbO2 curves. We showed that the variation of Hb and HbO2 was positively correlated during the CPT, with a "far" channel on right forehead showing a smaller and faster HbO2 variation than Hb. This research suggests the fDA platform for the analysis of fNIRS data, which solves problem of high dimensionality, enables study of response dynamics, enhances characterization of the evoked response, and may improve design of future fNIRS experiments. |
doi_str_mv | 10.1117/1.JBO.18.11.117007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_spie_</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677925535</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1459975825</sourcerecordid><originalsourceid>FETCH-LOGICAL-c585t-5fb95857a8d2bdb8b10392b4e6d3cb24f03b323f8b2ef3a7a8c295875999c7be3</originalsourceid><addsrcrecordid>eNqFkUtPxCAUhYnR-P4DLkyXbjryLHTpa3wm40I3bghQSDCdtkKrGX-9jKNOokYTknsvfOcEOADsIThCCPFDNLo6noyQSFNaHEK-AjYRK2COsUCrqYeC5KQoxAbYivERQiiKslgHG5hiyjkVm-B6PDSm922j6qxSvcpU6mbRx-zZ25esdZlbAo1VIfONCyrYKoudNX1oo2m72bt2B6w5VUe7-1G3wf347O7kIr-ZnF-eHN3khgnW58zpMjVciQrrSguNICmxpraoiNGYOkg0wcQJja0jKnEGJwFnZVkari3ZBgcL3y60T4ONvZz6aGxdq8a2Q5So4LzEjBH2P8oooozRkv6P0nQBzgSeu-IFatLzY7BOdsFPVZhJBOU8GolkikYikSa5iCaJ9j_8Bz211ZfkM4sEHC6A2HkrH9shpD-Pf1s-_KZYcq--m5fvwvf9o9B7U9vb0_HP865y5A06wrRo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1459975825</pqid></control><display><type>article</type><title>Functional data analysis view of functional near infrared spectroscopy data</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Barati, Zeinab ; Zakeri, Issa ; Pourrezaei, Kambiz</creator><creatorcontrib>Barati, Zeinab ; Zakeri, Issa ; Pourrezaei, Kambiz</creatorcontrib><description>Functional near infrared spectroscopy (fNIRS) is a powerful tool for the study of oxygenation and hemodynamics of living tissues. Despite the continuous nature of the processes generating the data, analysis of fNIRS data has been limited to discrete-time methods. We propose a technique, namely functional data analysis (fDA), that converts discrete samples to continuous curves. We used fNIRS data collected on forehead during a cold pressor test (CPT) from 20 healthy subjects. Using functional principal component analysis, oxyhemoglobin (HbO2) and deoxyhemoglobin (Hb) curves were decomposed into several components based on variability across the subjects. Each component corresponded to an experimental condition and provided qualitative and quantitative information of the shape and weight of that component. Furthermore, we applied functional canonical correlation analysis to investigate the interaction between Hb and HbO2 curves. We showed that the variation of Hb and HbO2 was positively correlated during the CPT, with a "far" channel on right forehead showing a smaller and faster HbO2 variation than Hb. This research suggests the fDA platform for the analysis of fNIRS data, which solves problem of high dimensionality, enables study of response dynamics, enhances characterization of the evoked response, and may improve design of future fNIRS experiments.</description><identifier>ISSN: 1083-3668</identifier><identifier>EISSN: 1560-2281</identifier><identifier>DOI: 10.1117/1.JBO.18.11.117007</identifier><identifier>PMID: 24247748</identifier><language>eng</language><publisher>United States: Society of Photo-Optical Instrumentation Engineers</publisher><subject>Algorithms ; Channels ; Correlation analysis ; Data processing ; Dynamic tests ; Forehead ; Forehead - blood supply ; Hemodynamics ; Hemodynamics - physiology ; Humans ; Infrared spectroscopy ; Oxyhemoglobins - analysis ; Principal Component Analysis ; Spectroscopy, Near-Infrared - methods</subject><ispartof>Journal of biomedical optics, 2013-11, Vol.18 (11), p.117007-117007</ispartof><rights>2013 Society of Photo-Optical Instrumentation Engineers (SPIE)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c585t-5fb95857a8d2bdb8b10392b4e6d3cb24f03b323f8b2ef3a7a8c295875999c7be3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24247748$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Barati, Zeinab</creatorcontrib><creatorcontrib>Zakeri, Issa</creatorcontrib><creatorcontrib>Pourrezaei, Kambiz</creatorcontrib><title>Functional data analysis view of functional near infrared spectroscopy data</title><title>Journal of biomedical optics</title><addtitle>J. Biomed. Opt</addtitle><description>Functional near infrared spectroscopy (fNIRS) is a powerful tool for the study of oxygenation and hemodynamics of living tissues. Despite the continuous nature of the processes generating the data, analysis of fNIRS data has been limited to discrete-time methods. We propose a technique, namely functional data analysis (fDA), that converts discrete samples to continuous curves. We used fNIRS data collected on forehead during a cold pressor test (CPT) from 20 healthy subjects. Using functional principal component analysis, oxyhemoglobin (HbO2) and deoxyhemoglobin (Hb) curves were decomposed into several components based on variability across the subjects. Each component corresponded to an experimental condition and provided qualitative and quantitative information of the shape and weight of that component. Furthermore, we applied functional canonical correlation analysis to investigate the interaction between Hb and HbO2 curves. We showed that the variation of Hb and HbO2 was positively correlated during the CPT, with a "far" channel on right forehead showing a smaller and faster HbO2 variation than Hb. This research suggests the fDA platform for the analysis of fNIRS data, which solves problem of high dimensionality, enables study of response dynamics, enhances characterization of the evoked response, and may improve design of future fNIRS experiments.</description><subject>Algorithms</subject><subject>Channels</subject><subject>Correlation analysis</subject><subject>Data processing</subject><subject>Dynamic tests</subject><subject>Forehead</subject><subject>Forehead - blood supply</subject><subject>Hemodynamics</subject><subject>Hemodynamics - physiology</subject><subject>Humans</subject><subject>Infrared spectroscopy</subject><subject>Oxyhemoglobins - analysis</subject><subject>Principal Component Analysis</subject><subject>Spectroscopy, Near-Infrared - methods</subject><issn>1083-3668</issn><issn>1560-2281</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtPxCAUhYnR-P4DLkyXbjryLHTpa3wm40I3bghQSDCdtkKrGX-9jKNOokYTknsvfOcEOADsIThCCPFDNLo6noyQSFNaHEK-AjYRK2COsUCrqYeC5KQoxAbYivERQiiKslgHG5hiyjkVm-B6PDSm922j6qxSvcpU6mbRx-zZ25esdZlbAo1VIfONCyrYKoudNX1oo2m72bt2B6w5VUe7-1G3wf347O7kIr-ZnF-eHN3khgnW58zpMjVciQrrSguNICmxpraoiNGYOkg0wcQJja0jKnEGJwFnZVkari3ZBgcL3y60T4ONvZz6aGxdq8a2Q5So4LzEjBH2P8oooozRkv6P0nQBzgSeu-IFatLzY7BOdsFPVZhJBOU8GolkikYikSa5iCaJ9j_8Bz211ZfkM4sEHC6A2HkrH9shpD-Pf1s-_KZYcq--m5fvwvf9o9B7U9vb0_HP865y5A06wrRo</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Barati, Zeinab</creator><creator>Zakeri, Issa</creator><creator>Pourrezaei, Kambiz</creator><general>Society of Photo-Optical Instrumentation Engineers</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20131101</creationdate><title>Functional data analysis view of functional near infrared spectroscopy data</title><author>Barati, Zeinab ; Zakeri, Issa ; Pourrezaei, Kambiz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c585t-5fb95857a8d2bdb8b10392b4e6d3cb24f03b323f8b2ef3a7a8c295875999c7be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Channels</topic><topic>Correlation analysis</topic><topic>Data processing</topic><topic>Dynamic tests</topic><topic>Forehead</topic><topic>Forehead - blood supply</topic><topic>Hemodynamics</topic><topic>Hemodynamics - physiology</topic><topic>Humans</topic><topic>Infrared spectroscopy</topic><topic>Oxyhemoglobins - analysis</topic><topic>Principal Component Analysis</topic><topic>Spectroscopy, Near-Infrared - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barati, Zeinab</creatorcontrib><creatorcontrib>Zakeri, Issa</creatorcontrib><creatorcontrib>Pourrezaei, Kambiz</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of biomedical optics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barati, Zeinab</au><au>Zakeri, Issa</au><au>Pourrezaei, Kambiz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional data analysis view of functional near infrared spectroscopy data</atitle><jtitle>Journal of biomedical optics</jtitle><addtitle>J. Biomed. Opt</addtitle><date>2013-11-01</date><risdate>2013</risdate><volume>18</volume><issue>11</issue><spage>117007</spage><epage>117007</epage><pages>117007-117007</pages><issn>1083-3668</issn><eissn>1560-2281</eissn><abstract>Functional near infrared spectroscopy (fNIRS) is a powerful tool for the study of oxygenation and hemodynamics of living tissues. Despite the continuous nature of the processes generating the data, analysis of fNIRS data has been limited to discrete-time methods. We propose a technique, namely functional data analysis (fDA), that converts discrete samples to continuous curves. We used fNIRS data collected on forehead during a cold pressor test (CPT) from 20 healthy subjects. Using functional principal component analysis, oxyhemoglobin (HbO2) and deoxyhemoglobin (Hb) curves were decomposed into several components based on variability across the subjects. Each component corresponded to an experimental condition and provided qualitative and quantitative information of the shape and weight of that component. Furthermore, we applied functional canonical correlation analysis to investigate the interaction between Hb and HbO2 curves. We showed that the variation of Hb and HbO2 was positively correlated during the CPT, with a "far" channel on right forehead showing a smaller and faster HbO2 variation than Hb. This research suggests the fDA platform for the analysis of fNIRS data, which solves problem of high dimensionality, enables study of response dynamics, enhances characterization of the evoked response, and may improve design of future fNIRS experiments.</abstract><cop>United States</cop><pub>Society of Photo-Optical Instrumentation Engineers</pub><pmid>24247748</pmid><doi>10.1117/1.JBO.18.11.117007</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1083-3668 |
ispartof | Journal of biomedical optics, 2013-11, Vol.18 (11), p.117007-117007 |
issn | 1083-3668 1560-2281 |
language | eng |
recordid | cdi_proquest_miscellaneous_1677925535 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Algorithms Channels Correlation analysis Data processing Dynamic tests Forehead Forehead - blood supply Hemodynamics Hemodynamics - physiology Humans Infrared spectroscopy Oxyhemoglobins - analysis Principal Component Analysis Spectroscopy, Near-Infrared - methods |
title | Functional data analysis view of functional near infrared spectroscopy data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T07%3A35%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_spie_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20data%20analysis%20view%20of%20functional%20near%20infrared%20spectroscopy%20data&rft.jtitle=Journal%20of%20biomedical%20optics&rft.au=Barati,%20Zeinab&rft.date=2013-11-01&rft.volume=18&rft.issue=11&rft.spage=117007&rft.epage=117007&rft.pages=117007-117007&rft.issn=1083-3668&rft.eissn=1560-2281&rft_id=info:doi/10.1117/1.JBO.18.11.117007&rft_dat=%3Cproquest_spie_%3E1459975825%3C/proquest_spie_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1459975825&rft_id=info:pmid/24247748&rfr_iscdi=true |