A low elastic modulus Ti-Nb-Hf alloy bioactivated with an elastin-like protein-based polymer enhances osteoblast cell adhesion and spreading
β‐type titanium alloys with low Young's modulus are desirable to reduce stress shielding effect and enhance bone remodeling for implants used to substitute failed hard tissue. For biomaterials application, the surface bioactivity is necessary to achieve optimal osseointegration. In the previous...
Gespeichert in:
Veröffentlicht in: | Journal of biomedical materials research. Part A 2013-03, Vol.101A (3), p.819-826 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 826 |
---|---|
container_issue | 3 |
container_start_page | 819 |
container_title | Journal of biomedical materials research. Part A |
container_volume | 101A |
creator | González, Marta Salvagni, Emiliano Rodríguez-Cabello, José C. Rupérez, Elisa Gil, Francisco J. Peña, Javier Manero, José M. |
description | β‐type titanium alloys with low Young's modulus are desirable to reduce stress shielding effect and enhance bone remodeling for implants used to substitute failed hard tissue. For biomaterials application, the surface bioactivity is necessary to achieve optimal osseointegration. In the previous work, the low elastic modulus (43 GPa) Ti‐25Nb‐16Hf (wt %) alloy was mechanically and microstructurally characterized. In the present work, the biological behavior of Ti‐25Nb‐16Hf was studied. The biological response was improved by surface modification. The metal surface was modified by oxygen plasma and subsequently silanized with 3‐chloropropyl(triethoxy)silane for covalent immobilization of the elastin‐like polymer. The elastin‐like polymer employed exhibits RGD bioactive motives inspired to the extracellular matrix in order to improve cell adhesion and spreading. Upon modification, the achieved surface presented different physical and chemical properties, such as surface energy and chemical composition. Subsequently, osteoblast adhesion, cell numbers, and differentiation studies were performed to correlate surface properties and cell response. The general tendency was that the higher surface energy the higher cell adhesion. Furthermore, cell culture and immunofluorescence microscopy images demonstrated that RGD‐modified surfaces improved adhesion and spreading of the osteoblast cell type. © 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 101A: 819–826, 2013. |
doi_str_mv | 10.1002/jbm.a.34388 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677924842</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1664201350</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4658-a9fa6a87f1bc021855cd4bda069a1a6308f603208426cefd39e666f685e8cf753</originalsourceid><addsrcrecordid>eNqNkU9v1DAQxSMEoqVw4o58QUJCWfw_zrFdQUtVFlCLkLhYE8dm3TrxEics-x340HjZbbkBp5mxfu_NyK8onhI8IxjTV9dNN4MZ40ype8UhEYKWvJbi_rbndcloLQ-KRyldZ1hiQR8WBzS_0TweFj-PUYhrZAOk0RvUxXYKU0JXvlw05ZlDEELcoMZHMKP_DqNt0dqPSwT9XtOXwd9YtBriaPPQQMrIKoZNZwdk-yX0xiYU02hjsxUgY0NA0C5t8rHPPi1Kq8FC6_uvj4sHDkKyT_b1qPj05vXV_Ky8eH_6dn58URouhSqhdiBBVY40BlOihDAtb1rAsgYCkmHlJGYUK06lsa5ltZVSOqmEVcZVgh0VL3a--epvk02j7nza3gW9jVPSRFZVTXnW_wcqOcWECfxvlCoqCBe0zujLHWqGmNJgnV4NvoNhownW21B1DlWD_h1qpp_tjaems-0de5tiBp7vAUgGghvyp_v0h6twXSvOM0d23NoHu_nbTn1-8u52ebnT-BzhjzsNDDdaVqwS-vPiVC8-XF5-JPNz_YX9Anb8ycU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1282514529</pqid></control><display><type>article</type><title>A low elastic modulus Ti-Nb-Hf alloy bioactivated with an elastin-like protein-based polymer enhances osteoblast cell adhesion and spreading</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>González, Marta ; Salvagni, Emiliano ; Rodríguez-Cabello, José C. ; Rupérez, Elisa ; Gil, Francisco J. ; Peña, Javier ; Manero, José M.</creator><creatorcontrib>González, Marta ; Salvagni, Emiliano ; Rodríguez-Cabello, José C. ; Rupérez, Elisa ; Gil, Francisco J. ; Peña, Javier ; Manero, José M.</creatorcontrib><description>β‐type titanium alloys with low Young's modulus are desirable to reduce stress shielding effect and enhance bone remodeling for implants used to substitute failed hard tissue. For biomaterials application, the surface bioactivity is necessary to achieve optimal osseointegration. In the previous work, the low elastic modulus (43 GPa) Ti‐25Nb‐16Hf (wt %) alloy was mechanically and microstructurally characterized. In the present work, the biological behavior of Ti‐25Nb‐16Hf was studied. The biological response was improved by surface modification. The metal surface was modified by oxygen plasma and subsequently silanized with 3‐chloropropyl(triethoxy)silane for covalent immobilization of the elastin‐like polymer. The elastin‐like polymer employed exhibits RGD bioactive motives inspired to the extracellular matrix in order to improve cell adhesion and spreading. Upon modification, the achieved surface presented different physical and chemical properties, such as surface energy and chemical composition. Subsequently, osteoblast adhesion, cell numbers, and differentiation studies were performed to correlate surface properties and cell response. The general tendency was that the higher surface energy the higher cell adhesion. Furthermore, cell culture and immunofluorescence microscopy images demonstrated that RGD‐modified surfaces improved adhesion and spreading of the osteoblast cell type. © 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 101A: 819–826, 2013.</description><identifier>ISSN: 1549-3296</identifier><identifier>EISSN: 1552-4965</identifier><identifier>DOI: 10.1002/jbm.a.34388</identifier><identifier>PMID: 22962002</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Adhesion ; Alloys - chemistry ; Biocompatibility ; biofunctionalization ; Biological and medical sciences ; Biomedical materials ; Cell Adhesion ; Cell Line ; Coated Materials, Biocompatible - chemistry ; Elastic Modulus ; Elastin - chemistry ; elastin-like polymers ; Humans ; low elastic modulus ; Materials Testing ; Medical sciences ; Modulus of elasticity ; Oligopeptides - chemistry ; Osteoblasts - cytology ; Osteoblasts - metabolism ; Polymers - chemistry ; Spreading ; stress shielding effect ; Surface energy ; Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases ; Surgical implants ; Technology. Biomaterials. Equipments ; titanium alloy ; Titanium base alloys</subject><ispartof>Journal of biomedical materials research. Part A, 2013-03, Vol.101A (3), p.819-826</ispartof><rights>Copyright © 2012 Wiley Periodicals, Inc.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4658-a9fa6a87f1bc021855cd4bda069a1a6308f603208426cefd39e666f685e8cf753</citedby><cites>FETCH-LOGICAL-c4658-a9fa6a87f1bc021855cd4bda069a1a6308f603208426cefd39e666f685e8cf753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbm.a.34388$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbm.a.34388$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27099844$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22962002$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>González, Marta</creatorcontrib><creatorcontrib>Salvagni, Emiliano</creatorcontrib><creatorcontrib>Rodríguez-Cabello, José C.</creatorcontrib><creatorcontrib>Rupérez, Elisa</creatorcontrib><creatorcontrib>Gil, Francisco J.</creatorcontrib><creatorcontrib>Peña, Javier</creatorcontrib><creatorcontrib>Manero, José M.</creatorcontrib><title>A low elastic modulus Ti-Nb-Hf alloy bioactivated with an elastin-like protein-based polymer enhances osteoblast cell adhesion and spreading</title><title>Journal of biomedical materials research. Part A</title><addtitle>J. Biomed. Mater. Res</addtitle><description>β‐type titanium alloys with low Young's modulus are desirable to reduce stress shielding effect and enhance bone remodeling for implants used to substitute failed hard tissue. For biomaterials application, the surface bioactivity is necessary to achieve optimal osseointegration. In the previous work, the low elastic modulus (43 GPa) Ti‐25Nb‐16Hf (wt %) alloy was mechanically and microstructurally characterized. In the present work, the biological behavior of Ti‐25Nb‐16Hf was studied. The biological response was improved by surface modification. The metal surface was modified by oxygen plasma and subsequently silanized with 3‐chloropropyl(triethoxy)silane for covalent immobilization of the elastin‐like polymer. The elastin‐like polymer employed exhibits RGD bioactive motives inspired to the extracellular matrix in order to improve cell adhesion and spreading. Upon modification, the achieved surface presented different physical and chemical properties, such as surface energy and chemical composition. Subsequently, osteoblast adhesion, cell numbers, and differentiation studies were performed to correlate surface properties and cell response. The general tendency was that the higher surface energy the higher cell adhesion. Furthermore, cell culture and immunofluorescence microscopy images demonstrated that RGD‐modified surfaces improved adhesion and spreading of the osteoblast cell type. © 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 101A: 819–826, 2013.</description><subject>Adhesion</subject><subject>Alloys - chemistry</subject><subject>Biocompatibility</subject><subject>biofunctionalization</subject><subject>Biological and medical sciences</subject><subject>Biomedical materials</subject><subject>Cell Adhesion</subject><subject>Cell Line</subject><subject>Coated Materials, Biocompatible - chemistry</subject><subject>Elastic Modulus</subject><subject>Elastin - chemistry</subject><subject>elastin-like polymers</subject><subject>Humans</subject><subject>low elastic modulus</subject><subject>Materials Testing</subject><subject>Medical sciences</subject><subject>Modulus of elasticity</subject><subject>Oligopeptides - chemistry</subject><subject>Osteoblasts - cytology</subject><subject>Osteoblasts - metabolism</subject><subject>Polymers - chemistry</subject><subject>Spreading</subject><subject>stress shielding effect</subject><subject>Surface energy</subject><subject>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</subject><subject>Surgical implants</subject><subject>Technology. Biomaterials. Equipments</subject><subject>titanium alloy</subject><subject>Titanium base alloys</subject><issn>1549-3296</issn><issn>1552-4965</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU9v1DAQxSMEoqVw4o58QUJCWfw_zrFdQUtVFlCLkLhYE8dm3TrxEics-x340HjZbbkBp5mxfu_NyK8onhI8IxjTV9dNN4MZ40ype8UhEYKWvJbi_rbndcloLQ-KRyldZ1hiQR8WBzS_0TweFj-PUYhrZAOk0RvUxXYKU0JXvlw05ZlDEELcoMZHMKP_DqNt0dqPSwT9XtOXwd9YtBriaPPQQMrIKoZNZwdk-yX0xiYU02hjsxUgY0NA0C5t8rHPPi1Kq8FC6_uvj4sHDkKyT_b1qPj05vXV_Ky8eH_6dn58URouhSqhdiBBVY40BlOihDAtb1rAsgYCkmHlJGYUK06lsa5ltZVSOqmEVcZVgh0VL3a--epvk02j7nza3gW9jVPSRFZVTXnW_wcqOcWECfxvlCoqCBe0zujLHWqGmNJgnV4NvoNhownW21B1DlWD_h1qpp_tjaems-0de5tiBp7vAUgGghvyp_v0h6twXSvOM0d23NoHu_nbTn1-8u52ebnT-BzhjzsNDDdaVqwS-vPiVC8-XF5-JPNz_YX9Anb8ycU</recordid><startdate>201303</startdate><enddate>201303</enddate><creator>González, Marta</creator><creator>Salvagni, Emiliano</creator><creator>Rodríguez-Cabello, José C.</creator><creator>Rupérez, Elisa</creator><creator>Gil, Francisco J.</creator><creator>Peña, Javier</creator><creator>Manero, José M.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley-Blackwell</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>F28</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>201303</creationdate><title>A low elastic modulus Ti-Nb-Hf alloy bioactivated with an elastin-like protein-based polymer enhances osteoblast cell adhesion and spreading</title><author>González, Marta ; Salvagni, Emiliano ; Rodríguez-Cabello, José C. ; Rupérez, Elisa ; Gil, Francisco J. ; Peña, Javier ; Manero, José M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4658-a9fa6a87f1bc021855cd4bda069a1a6308f603208426cefd39e666f685e8cf753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adhesion</topic><topic>Alloys - chemistry</topic><topic>Biocompatibility</topic><topic>biofunctionalization</topic><topic>Biological and medical sciences</topic><topic>Biomedical materials</topic><topic>Cell Adhesion</topic><topic>Cell Line</topic><topic>Coated Materials, Biocompatible - chemistry</topic><topic>Elastic Modulus</topic><topic>Elastin - chemistry</topic><topic>elastin-like polymers</topic><topic>Humans</topic><topic>low elastic modulus</topic><topic>Materials Testing</topic><topic>Medical sciences</topic><topic>Modulus of elasticity</topic><topic>Oligopeptides - chemistry</topic><topic>Osteoblasts - cytology</topic><topic>Osteoblasts - metabolism</topic><topic>Polymers - chemistry</topic><topic>Spreading</topic><topic>stress shielding effect</topic><topic>Surface energy</topic><topic>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</topic><topic>Surgical implants</topic><topic>Technology. Biomaterials. Equipments</topic><topic>titanium alloy</topic><topic>Titanium base alloys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>González, Marta</creatorcontrib><creatorcontrib>Salvagni, Emiliano</creatorcontrib><creatorcontrib>Rodríguez-Cabello, José C.</creatorcontrib><creatorcontrib>Rupérez, Elisa</creatorcontrib><creatorcontrib>Gil, Francisco J.</creatorcontrib><creatorcontrib>Peña, Javier</creatorcontrib><creatorcontrib>Manero, José M.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of biomedical materials research. Part A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>González, Marta</au><au>Salvagni, Emiliano</au><au>Rodríguez-Cabello, José C.</au><au>Rupérez, Elisa</au><au>Gil, Francisco J.</au><au>Peña, Javier</au><au>Manero, José M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A low elastic modulus Ti-Nb-Hf alloy bioactivated with an elastin-like protein-based polymer enhances osteoblast cell adhesion and spreading</atitle><jtitle>Journal of biomedical materials research. Part A</jtitle><addtitle>J. Biomed. Mater. Res</addtitle><date>2013-03</date><risdate>2013</risdate><volume>101A</volume><issue>3</issue><spage>819</spage><epage>826</epage><pages>819-826</pages><issn>1549-3296</issn><eissn>1552-4965</eissn><abstract>β‐type titanium alloys with low Young's modulus are desirable to reduce stress shielding effect and enhance bone remodeling for implants used to substitute failed hard tissue. For biomaterials application, the surface bioactivity is necessary to achieve optimal osseointegration. In the previous work, the low elastic modulus (43 GPa) Ti‐25Nb‐16Hf (wt %) alloy was mechanically and microstructurally characterized. In the present work, the biological behavior of Ti‐25Nb‐16Hf was studied. The biological response was improved by surface modification. The metal surface was modified by oxygen plasma and subsequently silanized with 3‐chloropropyl(triethoxy)silane for covalent immobilization of the elastin‐like polymer. The elastin‐like polymer employed exhibits RGD bioactive motives inspired to the extracellular matrix in order to improve cell adhesion and spreading. Upon modification, the achieved surface presented different physical and chemical properties, such as surface energy and chemical composition. Subsequently, osteoblast adhesion, cell numbers, and differentiation studies were performed to correlate surface properties and cell response. The general tendency was that the higher surface energy the higher cell adhesion. Furthermore, cell culture and immunofluorescence microscopy images demonstrated that RGD‐modified surfaces improved adhesion and spreading of the osteoblast cell type. © 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 101A: 819–826, 2013.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>22962002</pmid><doi>10.1002/jbm.a.34388</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-3296 |
ispartof | Journal of biomedical materials research. Part A, 2013-03, Vol.101A (3), p.819-826 |
issn | 1549-3296 1552-4965 |
language | eng |
recordid | cdi_proquest_miscellaneous_1677924842 |
source | MEDLINE; Wiley Online Library All Journals |
subjects | Adhesion Alloys - chemistry Biocompatibility biofunctionalization Biological and medical sciences Biomedical materials Cell Adhesion Cell Line Coated Materials, Biocompatible - chemistry Elastic Modulus Elastin - chemistry elastin-like polymers Humans low elastic modulus Materials Testing Medical sciences Modulus of elasticity Oligopeptides - chemistry Osteoblasts - cytology Osteoblasts - metabolism Polymers - chemistry Spreading stress shielding effect Surface energy Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases Surgical implants Technology. Biomaterials. Equipments titanium alloy Titanium base alloys |
title | A low elastic modulus Ti-Nb-Hf alloy bioactivated with an elastin-like protein-based polymer enhances osteoblast cell adhesion and spreading |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T17%3A02%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20low%20elastic%20modulus%20Ti-Nb-Hf%20alloy%20bioactivated%20with%20an%20elastin-like%20protein-based%20polymer%20enhances%20osteoblast%20cell%20adhesion%20and%20spreading&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20A&rft.au=Gonz%C3%A1lez,%20Marta&rft.date=2013-03&rft.volume=101A&rft.issue=3&rft.spage=819&rft.epage=826&rft.pages=819-826&rft.issn=1549-3296&rft.eissn=1552-4965&rft_id=info:doi/10.1002/jbm.a.34388&rft_dat=%3Cproquest_cross%3E1664201350%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1282514529&rft_id=info:pmid/22962002&rfr_iscdi=true |