A low elastic modulus Ti-Nb-Hf alloy bioactivated with an elastin-like protein-based polymer enhances osteoblast cell adhesion and spreading

β‐type titanium alloys with low Young's modulus are desirable to reduce stress shielding effect and enhance bone remodeling for implants used to substitute failed hard tissue. For biomaterials application, the surface bioactivity is necessary to achieve optimal osseointegration. In the previous...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomedical materials research. Part A 2013-03, Vol.101A (3), p.819-826
Hauptverfasser: González, Marta, Salvagni, Emiliano, Rodríguez-Cabello, José C., Rupérez, Elisa, Gil, Francisco J., Peña, Javier, Manero, José M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 826
container_issue 3
container_start_page 819
container_title Journal of biomedical materials research. Part A
container_volume 101A
creator González, Marta
Salvagni, Emiliano
Rodríguez-Cabello, José C.
Rupérez, Elisa
Gil, Francisco J.
Peña, Javier
Manero, José M.
description β‐type titanium alloys with low Young's modulus are desirable to reduce stress shielding effect and enhance bone remodeling for implants used to substitute failed hard tissue. For biomaterials application, the surface bioactivity is necessary to achieve optimal osseointegration. In the previous work, the low elastic modulus (43 GPa) Ti‐25Nb‐16Hf (wt %) alloy was mechanically and microstructurally characterized. In the present work, the biological behavior of Ti‐25Nb‐16Hf was studied. The biological response was improved by surface modification. The metal surface was modified by oxygen plasma and subsequently silanized with 3‐chloropropyl(triethoxy)silane for covalent immobilization of the elastin‐like polymer. The elastin‐like polymer employed exhibits RGD bioactive motives inspired to the extracellular matrix in order to improve cell adhesion and spreading. Upon modification, the achieved surface presented different physical and chemical properties, such as surface energy and chemical composition. Subsequently, osteoblast adhesion, cell numbers, and differentiation studies were performed to correlate surface properties and cell response. The general tendency was that the higher surface energy the higher cell adhesion. Furthermore, cell culture and immunofluorescence microscopy images demonstrated that RGD‐modified surfaces improved adhesion and spreading of the osteoblast cell type. © 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 101A: 819–826, 2013.
doi_str_mv 10.1002/jbm.a.34388
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677924842</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1664201350</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4658-a9fa6a87f1bc021855cd4bda069a1a6308f603208426cefd39e666f685e8cf753</originalsourceid><addsrcrecordid>eNqNkU9v1DAQxSMEoqVw4o58QUJCWfw_zrFdQUtVFlCLkLhYE8dm3TrxEics-x340HjZbbkBp5mxfu_NyK8onhI8IxjTV9dNN4MZ40ype8UhEYKWvJbi_rbndcloLQ-KRyldZ1hiQR8WBzS_0TweFj-PUYhrZAOk0RvUxXYKU0JXvlw05ZlDEELcoMZHMKP_DqNt0dqPSwT9XtOXwd9YtBriaPPQQMrIKoZNZwdk-yX0xiYU02hjsxUgY0NA0C5t8rHPPi1Kq8FC6_uvj4sHDkKyT_b1qPj05vXV_Ky8eH_6dn58URouhSqhdiBBVY40BlOihDAtb1rAsgYCkmHlJGYUK06lsa5ltZVSOqmEVcZVgh0VL3a--epvk02j7nza3gW9jVPSRFZVTXnW_wcqOcWECfxvlCoqCBe0zujLHWqGmNJgnV4NvoNhownW21B1DlWD_h1qpp_tjaems-0de5tiBp7vAUgGghvyp_v0h6twXSvOM0d23NoHu_nbTn1-8u52ebnT-BzhjzsNDDdaVqwS-vPiVC8-XF5-JPNz_YX9Anb8ycU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1282514529</pqid></control><display><type>article</type><title>A low elastic modulus Ti-Nb-Hf alloy bioactivated with an elastin-like protein-based polymer enhances osteoblast cell adhesion and spreading</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>González, Marta ; Salvagni, Emiliano ; Rodríguez-Cabello, José C. ; Rupérez, Elisa ; Gil, Francisco J. ; Peña, Javier ; Manero, José M.</creator><creatorcontrib>González, Marta ; Salvagni, Emiliano ; Rodríguez-Cabello, José C. ; Rupérez, Elisa ; Gil, Francisco J. ; Peña, Javier ; Manero, José M.</creatorcontrib><description>β‐type titanium alloys with low Young's modulus are desirable to reduce stress shielding effect and enhance bone remodeling for implants used to substitute failed hard tissue. For biomaterials application, the surface bioactivity is necessary to achieve optimal osseointegration. In the previous work, the low elastic modulus (43 GPa) Ti‐25Nb‐16Hf (wt %) alloy was mechanically and microstructurally characterized. In the present work, the biological behavior of Ti‐25Nb‐16Hf was studied. The biological response was improved by surface modification. The metal surface was modified by oxygen plasma and subsequently silanized with 3‐chloropropyl(triethoxy)silane for covalent immobilization of the elastin‐like polymer. The elastin‐like polymer employed exhibits RGD bioactive motives inspired to the extracellular matrix in order to improve cell adhesion and spreading. Upon modification, the achieved surface presented different physical and chemical properties, such as surface energy and chemical composition. Subsequently, osteoblast adhesion, cell numbers, and differentiation studies were performed to correlate surface properties and cell response. The general tendency was that the higher surface energy the higher cell adhesion. Furthermore, cell culture and immunofluorescence microscopy images demonstrated that RGD‐modified surfaces improved adhesion and spreading of the osteoblast cell type. © 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 101A: 819–826, 2013.</description><identifier>ISSN: 1549-3296</identifier><identifier>EISSN: 1552-4965</identifier><identifier>DOI: 10.1002/jbm.a.34388</identifier><identifier>PMID: 22962002</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Adhesion ; Alloys - chemistry ; Biocompatibility ; biofunctionalization ; Biological and medical sciences ; Biomedical materials ; Cell Adhesion ; Cell Line ; Coated Materials, Biocompatible - chemistry ; Elastic Modulus ; Elastin - chemistry ; elastin-like polymers ; Humans ; low elastic modulus ; Materials Testing ; Medical sciences ; Modulus of elasticity ; Oligopeptides - chemistry ; Osteoblasts - cytology ; Osteoblasts - metabolism ; Polymers - chemistry ; Spreading ; stress shielding effect ; Surface energy ; Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases ; Surgical implants ; Technology. Biomaterials. Equipments ; titanium alloy ; Titanium base alloys</subject><ispartof>Journal of biomedical materials research. Part A, 2013-03, Vol.101A (3), p.819-826</ispartof><rights>Copyright © 2012 Wiley Periodicals, Inc.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4658-a9fa6a87f1bc021855cd4bda069a1a6308f603208426cefd39e666f685e8cf753</citedby><cites>FETCH-LOGICAL-c4658-a9fa6a87f1bc021855cd4bda069a1a6308f603208426cefd39e666f685e8cf753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbm.a.34388$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbm.a.34388$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27099844$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22962002$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>González, Marta</creatorcontrib><creatorcontrib>Salvagni, Emiliano</creatorcontrib><creatorcontrib>Rodríguez-Cabello, José C.</creatorcontrib><creatorcontrib>Rupérez, Elisa</creatorcontrib><creatorcontrib>Gil, Francisco J.</creatorcontrib><creatorcontrib>Peña, Javier</creatorcontrib><creatorcontrib>Manero, José M.</creatorcontrib><title>A low elastic modulus Ti-Nb-Hf alloy bioactivated with an elastin-like protein-based polymer enhances osteoblast cell adhesion and spreading</title><title>Journal of biomedical materials research. Part A</title><addtitle>J. Biomed. Mater. Res</addtitle><description>β‐type titanium alloys with low Young's modulus are desirable to reduce stress shielding effect and enhance bone remodeling for implants used to substitute failed hard tissue. For biomaterials application, the surface bioactivity is necessary to achieve optimal osseointegration. In the previous work, the low elastic modulus (43 GPa) Ti‐25Nb‐16Hf (wt %) alloy was mechanically and microstructurally characterized. In the present work, the biological behavior of Ti‐25Nb‐16Hf was studied. The biological response was improved by surface modification. The metal surface was modified by oxygen plasma and subsequently silanized with 3‐chloropropyl(triethoxy)silane for covalent immobilization of the elastin‐like polymer. The elastin‐like polymer employed exhibits RGD bioactive motives inspired to the extracellular matrix in order to improve cell adhesion and spreading. Upon modification, the achieved surface presented different physical and chemical properties, such as surface energy and chemical composition. Subsequently, osteoblast adhesion, cell numbers, and differentiation studies were performed to correlate surface properties and cell response. The general tendency was that the higher surface energy the higher cell adhesion. Furthermore, cell culture and immunofluorescence microscopy images demonstrated that RGD‐modified surfaces improved adhesion and spreading of the osteoblast cell type. © 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 101A: 819–826, 2013.</description><subject>Adhesion</subject><subject>Alloys - chemistry</subject><subject>Biocompatibility</subject><subject>biofunctionalization</subject><subject>Biological and medical sciences</subject><subject>Biomedical materials</subject><subject>Cell Adhesion</subject><subject>Cell Line</subject><subject>Coated Materials, Biocompatible - chemistry</subject><subject>Elastic Modulus</subject><subject>Elastin - chemistry</subject><subject>elastin-like polymers</subject><subject>Humans</subject><subject>low elastic modulus</subject><subject>Materials Testing</subject><subject>Medical sciences</subject><subject>Modulus of elasticity</subject><subject>Oligopeptides - chemistry</subject><subject>Osteoblasts - cytology</subject><subject>Osteoblasts - metabolism</subject><subject>Polymers - chemistry</subject><subject>Spreading</subject><subject>stress shielding effect</subject><subject>Surface energy</subject><subject>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</subject><subject>Surgical implants</subject><subject>Technology. Biomaterials. Equipments</subject><subject>titanium alloy</subject><subject>Titanium base alloys</subject><issn>1549-3296</issn><issn>1552-4965</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU9v1DAQxSMEoqVw4o58QUJCWfw_zrFdQUtVFlCLkLhYE8dm3TrxEics-x340HjZbbkBp5mxfu_NyK8onhI8IxjTV9dNN4MZ40ype8UhEYKWvJbi_rbndcloLQ-KRyldZ1hiQR8WBzS_0TweFj-PUYhrZAOk0RvUxXYKU0JXvlw05ZlDEELcoMZHMKP_DqNt0dqPSwT9XtOXwd9YtBriaPPQQMrIKoZNZwdk-yX0xiYU02hjsxUgY0NA0C5t8rHPPi1Kq8FC6_uvj4sHDkKyT_b1qPj05vXV_Ky8eH_6dn58URouhSqhdiBBVY40BlOihDAtb1rAsgYCkmHlJGYUK06lsa5ltZVSOqmEVcZVgh0VL3a--epvk02j7nza3gW9jVPSRFZVTXnW_wcqOcWECfxvlCoqCBe0zujLHWqGmNJgnV4NvoNhownW21B1DlWD_h1qpp_tjaems-0de5tiBp7vAUgGghvyp_v0h6twXSvOM0d23NoHu_nbTn1-8u52ebnT-BzhjzsNDDdaVqwS-vPiVC8-XF5-JPNz_YX9Anb8ycU</recordid><startdate>201303</startdate><enddate>201303</enddate><creator>González, Marta</creator><creator>Salvagni, Emiliano</creator><creator>Rodríguez-Cabello, José C.</creator><creator>Rupérez, Elisa</creator><creator>Gil, Francisco J.</creator><creator>Peña, Javier</creator><creator>Manero, José M.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley-Blackwell</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>F28</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>201303</creationdate><title>A low elastic modulus Ti-Nb-Hf alloy bioactivated with an elastin-like protein-based polymer enhances osteoblast cell adhesion and spreading</title><author>González, Marta ; Salvagni, Emiliano ; Rodríguez-Cabello, José C. ; Rupérez, Elisa ; Gil, Francisco J. ; Peña, Javier ; Manero, José M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4658-a9fa6a87f1bc021855cd4bda069a1a6308f603208426cefd39e666f685e8cf753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adhesion</topic><topic>Alloys - chemistry</topic><topic>Biocompatibility</topic><topic>biofunctionalization</topic><topic>Biological and medical sciences</topic><topic>Biomedical materials</topic><topic>Cell Adhesion</topic><topic>Cell Line</topic><topic>Coated Materials, Biocompatible - chemistry</topic><topic>Elastic Modulus</topic><topic>Elastin - chemistry</topic><topic>elastin-like polymers</topic><topic>Humans</topic><topic>low elastic modulus</topic><topic>Materials Testing</topic><topic>Medical sciences</topic><topic>Modulus of elasticity</topic><topic>Oligopeptides - chemistry</topic><topic>Osteoblasts - cytology</topic><topic>Osteoblasts - metabolism</topic><topic>Polymers - chemistry</topic><topic>Spreading</topic><topic>stress shielding effect</topic><topic>Surface energy</topic><topic>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</topic><topic>Surgical implants</topic><topic>Technology. Biomaterials. Equipments</topic><topic>titanium alloy</topic><topic>Titanium base alloys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>González, Marta</creatorcontrib><creatorcontrib>Salvagni, Emiliano</creatorcontrib><creatorcontrib>Rodríguez-Cabello, José C.</creatorcontrib><creatorcontrib>Rupérez, Elisa</creatorcontrib><creatorcontrib>Gil, Francisco J.</creatorcontrib><creatorcontrib>Peña, Javier</creatorcontrib><creatorcontrib>Manero, José M.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of biomedical materials research. Part A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>González, Marta</au><au>Salvagni, Emiliano</au><au>Rodríguez-Cabello, José C.</au><au>Rupérez, Elisa</au><au>Gil, Francisco J.</au><au>Peña, Javier</au><au>Manero, José M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A low elastic modulus Ti-Nb-Hf alloy bioactivated with an elastin-like protein-based polymer enhances osteoblast cell adhesion and spreading</atitle><jtitle>Journal of biomedical materials research. Part A</jtitle><addtitle>J. Biomed. Mater. Res</addtitle><date>2013-03</date><risdate>2013</risdate><volume>101A</volume><issue>3</issue><spage>819</spage><epage>826</epage><pages>819-826</pages><issn>1549-3296</issn><eissn>1552-4965</eissn><abstract>β‐type titanium alloys with low Young's modulus are desirable to reduce stress shielding effect and enhance bone remodeling for implants used to substitute failed hard tissue. For biomaterials application, the surface bioactivity is necessary to achieve optimal osseointegration. In the previous work, the low elastic modulus (43 GPa) Ti‐25Nb‐16Hf (wt %) alloy was mechanically and microstructurally characterized. In the present work, the biological behavior of Ti‐25Nb‐16Hf was studied. The biological response was improved by surface modification. The metal surface was modified by oxygen plasma and subsequently silanized with 3‐chloropropyl(triethoxy)silane for covalent immobilization of the elastin‐like polymer. The elastin‐like polymer employed exhibits RGD bioactive motives inspired to the extracellular matrix in order to improve cell adhesion and spreading. Upon modification, the achieved surface presented different physical and chemical properties, such as surface energy and chemical composition. Subsequently, osteoblast adhesion, cell numbers, and differentiation studies were performed to correlate surface properties and cell response. The general tendency was that the higher surface energy the higher cell adhesion. Furthermore, cell culture and immunofluorescence microscopy images demonstrated that RGD‐modified surfaces improved adhesion and spreading of the osteoblast cell type. © 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 101A: 819–826, 2013.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>22962002</pmid><doi>10.1002/jbm.a.34388</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1549-3296
ispartof Journal of biomedical materials research. Part A, 2013-03, Vol.101A (3), p.819-826
issn 1549-3296
1552-4965
language eng
recordid cdi_proquest_miscellaneous_1677924842
source MEDLINE; Wiley Online Library All Journals
subjects Adhesion
Alloys - chemistry
Biocompatibility
biofunctionalization
Biological and medical sciences
Biomedical materials
Cell Adhesion
Cell Line
Coated Materials, Biocompatible - chemistry
Elastic Modulus
Elastin - chemistry
elastin-like polymers
Humans
low elastic modulus
Materials Testing
Medical sciences
Modulus of elasticity
Oligopeptides - chemistry
Osteoblasts - cytology
Osteoblasts - metabolism
Polymers - chemistry
Spreading
stress shielding effect
Surface energy
Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases
Surgical implants
Technology. Biomaterials. Equipments
titanium alloy
Titanium base alloys
title A low elastic modulus Ti-Nb-Hf alloy bioactivated with an elastin-like protein-based polymer enhances osteoblast cell adhesion and spreading
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T17%3A02%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20low%20elastic%20modulus%20Ti-Nb-Hf%20alloy%20bioactivated%20with%20an%20elastin-like%20protein-based%20polymer%20enhances%20osteoblast%20cell%20adhesion%20and%20spreading&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20A&rft.au=Gonz%C3%A1lez,%20Marta&rft.date=2013-03&rft.volume=101A&rft.issue=3&rft.spage=819&rft.epage=826&rft.pages=819-826&rft.issn=1549-3296&rft.eissn=1552-4965&rft_id=info:doi/10.1002/jbm.a.34388&rft_dat=%3Cproquest_cross%3E1664201350%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1282514529&rft_id=info:pmid/22962002&rfr_iscdi=true