In vitro evaluation of three-dimensional single-walled carbon nanotube composites for bone tissue engineering
The purpose of this study was to develop three‐dimensional single‐walled carbon nanotube composites (SWCNT/PLAGA) using 10‐mg single‐walled carbon nanotubes (SWCNT) for bone regeneration and to determine the mechanical strength of the composites, and to evaluate the interaction of MC3T3‐E1 cells via...
Gespeichert in:
Veröffentlicht in: | Journal of biomedical materials research. Part A 2014-11, Vol.102 (11), p.4118-4126 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4126 |
---|---|
container_issue | 11 |
container_start_page | 4118 |
container_title | Journal of biomedical materials research. Part A |
container_volume | 102 |
creator | Gupta, Ashim Main, Benjamin J. Taylor, Brittany L. Gupta, Manu Whitworth, Craig A. Cady, Craig Freeman, Joseph W. El-Amin III, Saadiq F. |
description | The purpose of this study was to develop three‐dimensional single‐walled carbon nanotube composites (SWCNT/PLAGA) using 10‐mg single‐walled carbon nanotubes (SWCNT) for bone regeneration and to determine the mechanical strength of the composites, and to evaluate the interaction of MC3T3‐E1 cells via cell adhesion, growth, survival, proliferation, and gene expression. PLAGA (polylactic‐co‐glycolic acid) and SWCNT/PLAGA microspheres and composites were fabricated, characterized, and mechanical testing was performed. MC3T3‐E1 cells were seeded and cell adhesion/morphology, growth/survival, proliferation, and gene expression analysis were performed to evaluate biocompatibility. Imaging studies demonstrated microspheres with uniform shape and smooth surfaces, and uniform incorporation of SWCNT into PLAGA matrix. The microspheres bonded in a random packing manner while maintaining spacing, thus resembling trabeculae of cancellous bone. Addition of SWCNT led to greater compressive modulus and ultimate compressive strength. Imaging studies revealed that MC3T3‐E1 cells adhered, grew/survived, and exhibited normal, nonstressed morphology on the composites. SWCNT/PLAGA composites exhibited higher cell proliferation rate and gene expression compared with PLAGA. These results demonstrate the potential of SWCNT/PLAGA composites for musculoskeletal regeneration, for bone tissue engineering, and are promising for orthopedic applications as they possess the combined effect of increased mechanical strength, cell proliferation, and gene expression. © 2014 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 102A: 4118–4126, 2014. |
doi_str_mv | 10.1002/jbm.a.35088 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677922969</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3612328141</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5658-7a3f8013924cc1dc68774d4df99afa00ced70f59d6e9bd1cef71f34f3f5b222d3</originalsourceid><addsrcrecordid>eNqNkUtv1TAQhSMEog9YsUeWEFI3udiOH_GyraAUekHiIZaWY4-LL0l8sZOW_nt8HxSJFasZzXxnRjqnqp4RvCAY01erbliYRcNx2z6oDgnntGZK8Iebnqm6oUocVEc5rwosMKePqwPKGGsoxYfVcDmimzCliODG9LOZQhxR9Gj6ngBqFwYYcxmZHuUwXvdQ35q-B4esSV0hRzPGae4A2TisYw4TZORjQmUHaAo5z4BgvA4jQCr6J9Ujb_oMT_f1uPr65vWX87f11ceLy_PTq9pywdtamsa3mDSKMmuJs6KVkjnmvFLGG4wtOIk9V06A6hyx4CXxDfON5x2l1DXH1cnu7jrFnzPkSQ8hW-h7M0KcsyZCSkWLMeo_UMGIklzygr74B13FORVvthQmimG-Ofh8T83dAE6vUxhMutN_PC_Ayz1gsjW9T2a0If_lWtUK3G7e0R13G3q4u98TrDex6xK7Nnobu353tjzddkVU70QhT_DrXmTSDy1kI7n-9uFCLz8vGVOf3mvV_AaJOa-Z</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1660194059</pqid></control><display><type>article</type><title>In vitro evaluation of three-dimensional single-walled carbon nanotube composites for bone tissue engineering</title><source>MEDLINE</source><source>Wiley Online Library</source><creator>Gupta, Ashim ; Main, Benjamin J. ; Taylor, Brittany L. ; Gupta, Manu ; Whitworth, Craig A. ; Cady, Craig ; Freeman, Joseph W. ; El-Amin III, Saadiq F.</creator><creatorcontrib>Gupta, Ashim ; Main, Benjamin J. ; Taylor, Brittany L. ; Gupta, Manu ; Whitworth, Craig A. ; Cady, Craig ; Freeman, Joseph W. ; El-Amin III, Saadiq F.</creatorcontrib><description>The purpose of this study was to develop three‐dimensional single‐walled carbon nanotube composites (SWCNT/PLAGA) using 10‐mg single‐walled carbon nanotubes (SWCNT) for bone regeneration and to determine the mechanical strength of the composites, and to evaluate the interaction of MC3T3‐E1 cells via cell adhesion, growth, survival, proliferation, and gene expression. PLAGA (polylactic‐co‐glycolic acid) and SWCNT/PLAGA microspheres and composites were fabricated, characterized, and mechanical testing was performed. MC3T3‐E1 cells were seeded and cell adhesion/morphology, growth/survival, proliferation, and gene expression analysis were performed to evaluate biocompatibility. Imaging studies demonstrated microspheres with uniform shape and smooth surfaces, and uniform incorporation of SWCNT into PLAGA matrix. The microspheres bonded in a random packing manner while maintaining spacing, thus resembling trabeculae of cancellous bone. Addition of SWCNT led to greater compressive modulus and ultimate compressive strength. Imaging studies revealed that MC3T3‐E1 cells adhered, grew/survived, and exhibited normal, nonstressed morphology on the composites. SWCNT/PLAGA composites exhibited higher cell proliferation rate and gene expression compared with PLAGA. These results demonstrate the potential of SWCNT/PLAGA composites for musculoskeletal regeneration, for bone tissue engineering, and are promising for orthopedic applications as they possess the combined effect of increased mechanical strength, cell proliferation, and gene expression. © 2014 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 102A: 4118–4126, 2014.</description><identifier>ISSN: 1549-3296</identifier><identifier>EISSN: 1552-4965</identifier><identifier>DOI: 10.1002/jbm.a.35088</identifier><identifier>PMID: 24443220</identifier><language>eng</language><publisher>Hoboken, NJ: Blackwell Publishing Ltd</publisher><subject>Animals ; Biological and medical sciences ; Biotechnology ; Bone and Bones ; bone tissue engineering ; Bones ; Cell adhesion ; Cell Line ; Cell Proliferation ; Cell Survival ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Fundamental and applied biological sciences. Psychology ; Gene expression ; Health. Pharmaceutical industry ; Imaging ; Industrial applications and implications. Economical aspects ; Lactic Acid - chemistry ; Materials science ; Medical sciences ; Mice ; Microspheres ; Miscellaneous ; Morphology ; Nanocomposites - chemistry ; Nanoscale materials and structures: fabrication and characterization ; Nanotubes ; Nanotubes, Carbon - chemistry ; Physics ; PLAGA ; Polyglycolic Acid - chemistry ; Polylactic Acid-Polyglycolic Acid Copolymer ; Regeneration ; Single wall carbon nanotubes ; Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases ; SWCNT ; SWCNT/PLAGA composites ; SWCNT/PLAGA microspheres ; Technology. Biomaterials. Equipments ; Three dimensional ; Tissue Engineering</subject><ispartof>Journal of biomedical materials research. Part A, 2014-11, Vol.102 (11), p.4118-4126</ispartof><rights>2014 Wiley Periodicals, Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5658-7a3f8013924cc1dc68774d4df99afa00ced70f59d6e9bd1cef71f34f3f5b222d3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbm.a.35088$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbm.a.35088$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28986085$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24443220$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gupta, Ashim</creatorcontrib><creatorcontrib>Main, Benjamin J.</creatorcontrib><creatorcontrib>Taylor, Brittany L.</creatorcontrib><creatorcontrib>Gupta, Manu</creatorcontrib><creatorcontrib>Whitworth, Craig A.</creatorcontrib><creatorcontrib>Cady, Craig</creatorcontrib><creatorcontrib>Freeman, Joseph W.</creatorcontrib><creatorcontrib>El-Amin III, Saadiq F.</creatorcontrib><title>In vitro evaluation of three-dimensional single-walled carbon nanotube composites for bone tissue engineering</title><title>Journal of biomedical materials research. Part A</title><addtitle>J. Biomed. Mater. Res</addtitle><description>The purpose of this study was to develop three‐dimensional single‐walled carbon nanotube composites (SWCNT/PLAGA) using 10‐mg single‐walled carbon nanotubes (SWCNT) for bone regeneration and to determine the mechanical strength of the composites, and to evaluate the interaction of MC3T3‐E1 cells via cell adhesion, growth, survival, proliferation, and gene expression. PLAGA (polylactic‐co‐glycolic acid) and SWCNT/PLAGA microspheres and composites were fabricated, characterized, and mechanical testing was performed. MC3T3‐E1 cells were seeded and cell adhesion/morphology, growth/survival, proliferation, and gene expression analysis were performed to evaluate biocompatibility. Imaging studies demonstrated microspheres with uniform shape and smooth surfaces, and uniform incorporation of SWCNT into PLAGA matrix. The microspheres bonded in a random packing manner while maintaining spacing, thus resembling trabeculae of cancellous bone. Addition of SWCNT led to greater compressive modulus and ultimate compressive strength. Imaging studies revealed that MC3T3‐E1 cells adhered, grew/survived, and exhibited normal, nonstressed morphology on the composites. SWCNT/PLAGA composites exhibited higher cell proliferation rate and gene expression compared with PLAGA. These results demonstrate the potential of SWCNT/PLAGA composites for musculoskeletal regeneration, for bone tissue engineering, and are promising for orthopedic applications as they possess the combined effect of increased mechanical strength, cell proliferation, and gene expression. © 2014 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 102A: 4118–4126, 2014.</description><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>Bone and Bones</subject><subject>bone tissue engineering</subject><subject>Bones</subject><subject>Cell adhesion</subject><subject>Cell Line</subject><subject>Cell Proliferation</subject><subject>Cell Survival</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene expression</subject><subject>Health. Pharmaceutical industry</subject><subject>Imaging</subject><subject>Industrial applications and implications. Economical aspects</subject><subject>Lactic Acid - chemistry</subject><subject>Materials science</subject><subject>Medical sciences</subject><subject>Mice</subject><subject>Microspheres</subject><subject>Miscellaneous</subject><subject>Morphology</subject><subject>Nanocomposites - chemistry</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Nanotubes</subject><subject>Nanotubes, Carbon - chemistry</subject><subject>Physics</subject><subject>PLAGA</subject><subject>Polyglycolic Acid - chemistry</subject><subject>Polylactic Acid-Polyglycolic Acid Copolymer</subject><subject>Regeneration</subject><subject>Single wall carbon nanotubes</subject><subject>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</subject><subject>SWCNT</subject><subject>SWCNT/PLAGA composites</subject><subject>SWCNT/PLAGA microspheres</subject><subject>Technology. Biomaterials. Equipments</subject><subject>Three dimensional</subject><subject>Tissue Engineering</subject><issn>1549-3296</issn><issn>1552-4965</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkUtv1TAQhSMEog9YsUeWEFI3udiOH_GyraAUekHiIZaWY4-LL0l8sZOW_nt8HxSJFasZzXxnRjqnqp4RvCAY01erbliYRcNx2z6oDgnntGZK8Iebnqm6oUocVEc5rwosMKePqwPKGGsoxYfVcDmimzCliODG9LOZQhxR9Gj6ngBqFwYYcxmZHuUwXvdQ35q-B4esSV0hRzPGae4A2TisYw4TZORjQmUHaAo5z4BgvA4jQCr6J9Ujb_oMT_f1uPr65vWX87f11ceLy_PTq9pywdtamsa3mDSKMmuJs6KVkjnmvFLGG4wtOIk9V06A6hyx4CXxDfON5x2l1DXH1cnu7jrFnzPkSQ8hW-h7M0KcsyZCSkWLMeo_UMGIklzygr74B13FORVvthQmimG-Ofh8T83dAE6vUxhMutN_PC_Ayz1gsjW9T2a0If_lWtUK3G7e0R13G3q4u98TrDex6xK7Nnobu353tjzddkVU70QhT_DrXmTSDy1kI7n-9uFCLz8vGVOf3mvV_AaJOa-Z</recordid><startdate>201411</startdate><enddate>201411</enddate><creator>Gupta, Ashim</creator><creator>Main, Benjamin J.</creator><creator>Taylor, Brittany L.</creator><creator>Gupta, Manu</creator><creator>Whitworth, Craig A.</creator><creator>Cady, Craig</creator><creator>Freeman, Joseph W.</creator><creator>El-Amin III, Saadiq F.</creator><general>Blackwell Publishing Ltd</general><general>Wiley-Blackwell</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope></search><sort><creationdate>201411</creationdate><title>In vitro evaluation of three-dimensional single-walled carbon nanotube composites for bone tissue engineering</title><author>Gupta, Ashim ; Main, Benjamin J. ; Taylor, Brittany L. ; Gupta, Manu ; Whitworth, Craig A. ; Cady, Craig ; Freeman, Joseph W. ; El-Amin III, Saadiq F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5658-7a3f8013924cc1dc68774d4df99afa00ced70f59d6e9bd1cef71f34f3f5b222d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>Bone and Bones</topic><topic>bone tissue engineering</topic><topic>Bones</topic><topic>Cell adhesion</topic><topic>Cell Line</topic><topic>Cell Proliferation</topic><topic>Cell Survival</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene expression</topic><topic>Health. Pharmaceutical industry</topic><topic>Imaging</topic><topic>Industrial applications and implications. Economical aspects</topic><topic>Lactic Acid - chemistry</topic><topic>Materials science</topic><topic>Medical sciences</topic><topic>Mice</topic><topic>Microspheres</topic><topic>Miscellaneous</topic><topic>Morphology</topic><topic>Nanocomposites - chemistry</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Nanotubes</topic><topic>Nanotubes, Carbon - chemistry</topic><topic>Physics</topic><topic>PLAGA</topic><topic>Polyglycolic Acid - chemistry</topic><topic>Polylactic Acid-Polyglycolic Acid Copolymer</topic><topic>Regeneration</topic><topic>Single wall carbon nanotubes</topic><topic>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</topic><topic>SWCNT</topic><topic>SWCNT/PLAGA composites</topic><topic>SWCNT/PLAGA microspheres</topic><topic>Technology. Biomaterials. Equipments</topic><topic>Three dimensional</topic><topic>Tissue Engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gupta, Ashim</creatorcontrib><creatorcontrib>Main, Benjamin J.</creatorcontrib><creatorcontrib>Taylor, Brittany L.</creatorcontrib><creatorcontrib>Gupta, Manu</creatorcontrib><creatorcontrib>Whitworth, Craig A.</creatorcontrib><creatorcontrib>Cady, Craig</creatorcontrib><creatorcontrib>Freeman, Joseph W.</creatorcontrib><creatorcontrib>El-Amin III, Saadiq F.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Journal of biomedical materials research. Part A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gupta, Ashim</au><au>Main, Benjamin J.</au><au>Taylor, Brittany L.</au><au>Gupta, Manu</au><au>Whitworth, Craig A.</au><au>Cady, Craig</au><au>Freeman, Joseph W.</au><au>El-Amin III, Saadiq F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In vitro evaluation of three-dimensional single-walled carbon nanotube composites for bone tissue engineering</atitle><jtitle>Journal of biomedical materials research. Part A</jtitle><addtitle>J. Biomed. Mater. Res</addtitle><date>2014-11</date><risdate>2014</risdate><volume>102</volume><issue>11</issue><spage>4118</spage><epage>4126</epage><pages>4118-4126</pages><issn>1549-3296</issn><eissn>1552-4965</eissn><abstract>The purpose of this study was to develop three‐dimensional single‐walled carbon nanotube composites (SWCNT/PLAGA) using 10‐mg single‐walled carbon nanotubes (SWCNT) for bone regeneration and to determine the mechanical strength of the composites, and to evaluate the interaction of MC3T3‐E1 cells via cell adhesion, growth, survival, proliferation, and gene expression. PLAGA (polylactic‐co‐glycolic acid) and SWCNT/PLAGA microspheres and composites were fabricated, characterized, and mechanical testing was performed. MC3T3‐E1 cells were seeded and cell adhesion/morphology, growth/survival, proliferation, and gene expression analysis were performed to evaluate biocompatibility. Imaging studies demonstrated microspheres with uniform shape and smooth surfaces, and uniform incorporation of SWCNT into PLAGA matrix. The microspheres bonded in a random packing manner while maintaining spacing, thus resembling trabeculae of cancellous bone. Addition of SWCNT led to greater compressive modulus and ultimate compressive strength. Imaging studies revealed that MC3T3‐E1 cells adhered, grew/survived, and exhibited normal, nonstressed morphology on the composites. SWCNT/PLAGA composites exhibited higher cell proliferation rate and gene expression compared with PLAGA. These results demonstrate the potential of SWCNT/PLAGA composites for musculoskeletal regeneration, for bone tissue engineering, and are promising for orthopedic applications as they possess the combined effect of increased mechanical strength, cell proliferation, and gene expression. © 2014 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 102A: 4118–4126, 2014.</abstract><cop>Hoboken, NJ</cop><pub>Blackwell Publishing Ltd</pub><pmid>24443220</pmid><doi>10.1002/jbm.a.35088</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-3296 |
ispartof | Journal of biomedical materials research. Part A, 2014-11, Vol.102 (11), p.4118-4126 |
issn | 1549-3296 1552-4965 |
language | eng |
recordid | cdi_proquest_miscellaneous_1677922969 |
source | MEDLINE; Wiley Online Library |
subjects | Animals Biological and medical sciences Biotechnology Bone and Bones bone tissue engineering Bones Cell adhesion Cell Line Cell Proliferation Cell Survival Cross-disciplinary physics: materials science rheology Exact sciences and technology Fundamental and applied biological sciences. Psychology Gene expression Health. Pharmaceutical industry Imaging Industrial applications and implications. Economical aspects Lactic Acid - chemistry Materials science Medical sciences Mice Microspheres Miscellaneous Morphology Nanocomposites - chemistry Nanoscale materials and structures: fabrication and characterization Nanotubes Nanotubes, Carbon - chemistry Physics PLAGA Polyglycolic Acid - chemistry Polylactic Acid-Polyglycolic Acid Copolymer Regeneration Single wall carbon nanotubes Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases SWCNT SWCNT/PLAGA composites SWCNT/PLAGA microspheres Technology. Biomaterials. Equipments Three dimensional Tissue Engineering |
title | In vitro evaluation of three-dimensional single-walled carbon nanotube composites for bone tissue engineering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T18%3A18%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20vitro%20evaluation%20of%20three-dimensional%20single-walled%20carbon%20nanotube%20composites%20for%20bone%20tissue%20engineering&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20A&rft.au=Gupta,%20Ashim&rft.date=2014-11&rft.volume=102&rft.issue=11&rft.spage=4118&rft.epage=4126&rft.pages=4118-4126&rft.issn=1549-3296&rft.eissn=1552-4965&rft_id=info:doi/10.1002/jbm.a.35088&rft_dat=%3Cproquest_pubme%3E3612328141%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1660194059&rft_id=info:pmid/24443220&rfr_iscdi=true |