In vitro evaluation of three-dimensional single-walled carbon nanotube composites for bone tissue engineering

The purpose of this study was to develop three‐dimensional single‐walled carbon nanotube composites (SWCNT/PLAGA) using 10‐mg single‐walled carbon nanotubes (SWCNT) for bone regeneration and to determine the mechanical strength of the composites, and to evaluate the interaction of MC3T3‐E1 cells via...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomedical materials research. Part A 2014-11, Vol.102 (11), p.4118-4126
Hauptverfasser: Gupta, Ashim, Main, Benjamin J., Taylor, Brittany L., Gupta, Manu, Whitworth, Craig A., Cady, Craig, Freeman, Joseph W., El-Amin III, Saadiq F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4126
container_issue 11
container_start_page 4118
container_title Journal of biomedical materials research. Part A
container_volume 102
creator Gupta, Ashim
Main, Benjamin J.
Taylor, Brittany L.
Gupta, Manu
Whitworth, Craig A.
Cady, Craig
Freeman, Joseph W.
El-Amin III, Saadiq F.
description The purpose of this study was to develop three‐dimensional single‐walled carbon nanotube composites (SWCNT/PLAGA) using 10‐mg single‐walled carbon nanotubes (SWCNT) for bone regeneration and to determine the mechanical strength of the composites, and to evaluate the interaction of MC3T3‐E1 cells via cell adhesion, growth, survival, proliferation, and gene expression. PLAGA (polylactic‐co‐glycolic acid) and SWCNT/PLAGA microspheres and composites were fabricated, characterized, and mechanical testing was performed. MC3T3‐E1 cells were seeded and cell adhesion/morphology, growth/survival, proliferation, and gene expression analysis were performed to evaluate biocompatibility. Imaging studies demonstrated microspheres with uniform shape and smooth surfaces, and uniform incorporation of SWCNT into PLAGA matrix. The microspheres bonded in a random packing manner while maintaining spacing, thus resembling trabeculae of cancellous bone. Addition of SWCNT led to greater compressive modulus and ultimate compressive strength. Imaging studies revealed that MC3T3‐E1 cells adhered, grew/survived, and exhibited normal, nonstressed morphology on the composites. SWCNT/PLAGA composites exhibited higher cell proliferation rate and gene expression compared with PLAGA. These results demonstrate the potential of SWCNT/PLAGA composites for musculoskeletal regeneration, for bone tissue engineering, and are promising for orthopedic applications as they possess the combined effect of increased mechanical strength, cell proliferation, and gene expression. © 2014 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 102A: 4118–4126, 2014.
doi_str_mv 10.1002/jbm.a.35088
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677922969</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3612328141</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5658-7a3f8013924cc1dc68774d4df99afa00ced70f59d6e9bd1cef71f34f3f5b222d3</originalsourceid><addsrcrecordid>eNqNkUtv1TAQhSMEog9YsUeWEFI3udiOH_GyraAUekHiIZaWY4-LL0l8sZOW_nt8HxSJFasZzXxnRjqnqp4RvCAY01erbliYRcNx2z6oDgnntGZK8Iebnqm6oUocVEc5rwosMKePqwPKGGsoxYfVcDmimzCliODG9LOZQhxR9Gj6ngBqFwYYcxmZHuUwXvdQ35q-B4esSV0hRzPGae4A2TisYw4TZORjQmUHaAo5z4BgvA4jQCr6J9Ujb_oMT_f1uPr65vWX87f11ceLy_PTq9pywdtamsa3mDSKMmuJs6KVkjnmvFLGG4wtOIk9V06A6hyx4CXxDfON5x2l1DXH1cnu7jrFnzPkSQ8hW-h7M0KcsyZCSkWLMeo_UMGIklzygr74B13FORVvthQmimG-Ofh8T83dAE6vUxhMutN_PC_Ayz1gsjW9T2a0If_lWtUK3G7e0R13G3q4u98TrDex6xK7Nnobu353tjzddkVU70QhT_DrXmTSDy1kI7n-9uFCLz8vGVOf3mvV_AaJOa-Z</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1660194059</pqid></control><display><type>article</type><title>In vitro evaluation of three-dimensional single-walled carbon nanotube composites for bone tissue engineering</title><source>MEDLINE</source><source>Wiley Online Library</source><creator>Gupta, Ashim ; Main, Benjamin J. ; Taylor, Brittany L. ; Gupta, Manu ; Whitworth, Craig A. ; Cady, Craig ; Freeman, Joseph W. ; El-Amin III, Saadiq F.</creator><creatorcontrib>Gupta, Ashim ; Main, Benjamin J. ; Taylor, Brittany L. ; Gupta, Manu ; Whitworth, Craig A. ; Cady, Craig ; Freeman, Joseph W. ; El-Amin III, Saadiq F.</creatorcontrib><description>The purpose of this study was to develop three‐dimensional single‐walled carbon nanotube composites (SWCNT/PLAGA) using 10‐mg single‐walled carbon nanotubes (SWCNT) for bone regeneration and to determine the mechanical strength of the composites, and to evaluate the interaction of MC3T3‐E1 cells via cell adhesion, growth, survival, proliferation, and gene expression. PLAGA (polylactic‐co‐glycolic acid) and SWCNT/PLAGA microspheres and composites were fabricated, characterized, and mechanical testing was performed. MC3T3‐E1 cells were seeded and cell adhesion/morphology, growth/survival, proliferation, and gene expression analysis were performed to evaluate biocompatibility. Imaging studies demonstrated microspheres with uniform shape and smooth surfaces, and uniform incorporation of SWCNT into PLAGA matrix. The microspheres bonded in a random packing manner while maintaining spacing, thus resembling trabeculae of cancellous bone. Addition of SWCNT led to greater compressive modulus and ultimate compressive strength. Imaging studies revealed that MC3T3‐E1 cells adhered, grew/survived, and exhibited normal, nonstressed morphology on the composites. SWCNT/PLAGA composites exhibited higher cell proliferation rate and gene expression compared with PLAGA. These results demonstrate the potential of SWCNT/PLAGA composites for musculoskeletal regeneration, for bone tissue engineering, and are promising for orthopedic applications as they possess the combined effect of increased mechanical strength, cell proliferation, and gene expression. © 2014 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 102A: 4118–4126, 2014.</description><identifier>ISSN: 1549-3296</identifier><identifier>EISSN: 1552-4965</identifier><identifier>DOI: 10.1002/jbm.a.35088</identifier><identifier>PMID: 24443220</identifier><language>eng</language><publisher>Hoboken, NJ: Blackwell Publishing Ltd</publisher><subject>Animals ; Biological and medical sciences ; Biotechnology ; Bone and Bones ; bone tissue engineering ; Bones ; Cell adhesion ; Cell Line ; Cell Proliferation ; Cell Survival ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Fundamental and applied biological sciences. Psychology ; Gene expression ; Health. Pharmaceutical industry ; Imaging ; Industrial applications and implications. Economical aspects ; Lactic Acid - chemistry ; Materials science ; Medical sciences ; Mice ; Microspheres ; Miscellaneous ; Morphology ; Nanocomposites - chemistry ; Nanoscale materials and structures: fabrication and characterization ; Nanotubes ; Nanotubes, Carbon - chemistry ; Physics ; PLAGA ; Polyglycolic Acid - chemistry ; Polylactic Acid-Polyglycolic Acid Copolymer ; Regeneration ; Single wall carbon nanotubes ; Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases ; SWCNT ; SWCNT/PLAGA composites ; SWCNT/PLAGA microspheres ; Technology. Biomaterials. Equipments ; Three dimensional ; Tissue Engineering</subject><ispartof>Journal of biomedical materials research. Part A, 2014-11, Vol.102 (11), p.4118-4126</ispartof><rights>2014 Wiley Periodicals, Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5658-7a3f8013924cc1dc68774d4df99afa00ced70f59d6e9bd1cef71f34f3f5b222d3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbm.a.35088$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbm.a.35088$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28986085$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24443220$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gupta, Ashim</creatorcontrib><creatorcontrib>Main, Benjamin J.</creatorcontrib><creatorcontrib>Taylor, Brittany L.</creatorcontrib><creatorcontrib>Gupta, Manu</creatorcontrib><creatorcontrib>Whitworth, Craig A.</creatorcontrib><creatorcontrib>Cady, Craig</creatorcontrib><creatorcontrib>Freeman, Joseph W.</creatorcontrib><creatorcontrib>El-Amin III, Saadiq F.</creatorcontrib><title>In vitro evaluation of three-dimensional single-walled carbon nanotube composites for bone tissue engineering</title><title>Journal of biomedical materials research. Part A</title><addtitle>J. Biomed. Mater. Res</addtitle><description>The purpose of this study was to develop three‐dimensional single‐walled carbon nanotube composites (SWCNT/PLAGA) using 10‐mg single‐walled carbon nanotubes (SWCNT) for bone regeneration and to determine the mechanical strength of the composites, and to evaluate the interaction of MC3T3‐E1 cells via cell adhesion, growth, survival, proliferation, and gene expression. PLAGA (polylactic‐co‐glycolic acid) and SWCNT/PLAGA microspheres and composites were fabricated, characterized, and mechanical testing was performed. MC3T3‐E1 cells were seeded and cell adhesion/morphology, growth/survival, proliferation, and gene expression analysis were performed to evaluate biocompatibility. Imaging studies demonstrated microspheres with uniform shape and smooth surfaces, and uniform incorporation of SWCNT into PLAGA matrix. The microspheres bonded in a random packing manner while maintaining spacing, thus resembling trabeculae of cancellous bone. Addition of SWCNT led to greater compressive modulus and ultimate compressive strength. Imaging studies revealed that MC3T3‐E1 cells adhered, grew/survived, and exhibited normal, nonstressed morphology on the composites. SWCNT/PLAGA composites exhibited higher cell proliferation rate and gene expression compared with PLAGA. These results demonstrate the potential of SWCNT/PLAGA composites for musculoskeletal regeneration, for bone tissue engineering, and are promising for orthopedic applications as they possess the combined effect of increased mechanical strength, cell proliferation, and gene expression. © 2014 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 102A: 4118–4126, 2014.</description><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>Bone and Bones</subject><subject>bone tissue engineering</subject><subject>Bones</subject><subject>Cell adhesion</subject><subject>Cell Line</subject><subject>Cell Proliferation</subject><subject>Cell Survival</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene expression</subject><subject>Health. Pharmaceutical industry</subject><subject>Imaging</subject><subject>Industrial applications and implications. Economical aspects</subject><subject>Lactic Acid - chemistry</subject><subject>Materials science</subject><subject>Medical sciences</subject><subject>Mice</subject><subject>Microspheres</subject><subject>Miscellaneous</subject><subject>Morphology</subject><subject>Nanocomposites - chemistry</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Nanotubes</subject><subject>Nanotubes, Carbon - chemistry</subject><subject>Physics</subject><subject>PLAGA</subject><subject>Polyglycolic Acid - chemistry</subject><subject>Polylactic Acid-Polyglycolic Acid Copolymer</subject><subject>Regeneration</subject><subject>Single wall carbon nanotubes</subject><subject>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</subject><subject>SWCNT</subject><subject>SWCNT/PLAGA composites</subject><subject>SWCNT/PLAGA microspheres</subject><subject>Technology. Biomaterials. Equipments</subject><subject>Three dimensional</subject><subject>Tissue Engineering</subject><issn>1549-3296</issn><issn>1552-4965</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkUtv1TAQhSMEog9YsUeWEFI3udiOH_GyraAUekHiIZaWY4-LL0l8sZOW_nt8HxSJFasZzXxnRjqnqp4RvCAY01erbliYRcNx2z6oDgnntGZK8Iebnqm6oUocVEc5rwosMKePqwPKGGsoxYfVcDmimzCliODG9LOZQhxR9Gj6ngBqFwYYcxmZHuUwXvdQ35q-B4esSV0hRzPGae4A2TisYw4TZORjQmUHaAo5z4BgvA4jQCr6J9Ujb_oMT_f1uPr65vWX87f11ceLy_PTq9pywdtamsa3mDSKMmuJs6KVkjnmvFLGG4wtOIk9V06A6hyx4CXxDfON5x2l1DXH1cnu7jrFnzPkSQ8hW-h7M0KcsyZCSkWLMeo_UMGIklzygr74B13FORVvthQmimG-Ofh8T83dAE6vUxhMutN_PC_Ayz1gsjW9T2a0If_lWtUK3G7e0R13G3q4u98TrDex6xK7Nnobu353tjzddkVU70QhT_DrXmTSDy1kI7n-9uFCLz8vGVOf3mvV_AaJOa-Z</recordid><startdate>201411</startdate><enddate>201411</enddate><creator>Gupta, Ashim</creator><creator>Main, Benjamin J.</creator><creator>Taylor, Brittany L.</creator><creator>Gupta, Manu</creator><creator>Whitworth, Craig A.</creator><creator>Cady, Craig</creator><creator>Freeman, Joseph W.</creator><creator>El-Amin III, Saadiq F.</creator><general>Blackwell Publishing Ltd</general><general>Wiley-Blackwell</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope></search><sort><creationdate>201411</creationdate><title>In vitro evaluation of three-dimensional single-walled carbon nanotube composites for bone tissue engineering</title><author>Gupta, Ashim ; Main, Benjamin J. ; Taylor, Brittany L. ; Gupta, Manu ; Whitworth, Craig A. ; Cady, Craig ; Freeman, Joseph W. ; El-Amin III, Saadiq F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5658-7a3f8013924cc1dc68774d4df99afa00ced70f59d6e9bd1cef71f34f3f5b222d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>Bone and Bones</topic><topic>bone tissue engineering</topic><topic>Bones</topic><topic>Cell adhesion</topic><topic>Cell Line</topic><topic>Cell Proliferation</topic><topic>Cell Survival</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene expression</topic><topic>Health. Pharmaceutical industry</topic><topic>Imaging</topic><topic>Industrial applications and implications. Economical aspects</topic><topic>Lactic Acid - chemistry</topic><topic>Materials science</topic><topic>Medical sciences</topic><topic>Mice</topic><topic>Microspheres</topic><topic>Miscellaneous</topic><topic>Morphology</topic><topic>Nanocomposites - chemistry</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Nanotubes</topic><topic>Nanotubes, Carbon - chemistry</topic><topic>Physics</topic><topic>PLAGA</topic><topic>Polyglycolic Acid - chemistry</topic><topic>Polylactic Acid-Polyglycolic Acid Copolymer</topic><topic>Regeneration</topic><topic>Single wall carbon nanotubes</topic><topic>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</topic><topic>SWCNT</topic><topic>SWCNT/PLAGA composites</topic><topic>SWCNT/PLAGA microspheres</topic><topic>Technology. Biomaterials. Equipments</topic><topic>Three dimensional</topic><topic>Tissue Engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gupta, Ashim</creatorcontrib><creatorcontrib>Main, Benjamin J.</creatorcontrib><creatorcontrib>Taylor, Brittany L.</creatorcontrib><creatorcontrib>Gupta, Manu</creatorcontrib><creatorcontrib>Whitworth, Craig A.</creatorcontrib><creatorcontrib>Cady, Craig</creatorcontrib><creatorcontrib>Freeman, Joseph W.</creatorcontrib><creatorcontrib>El-Amin III, Saadiq F.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Journal of biomedical materials research. Part A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gupta, Ashim</au><au>Main, Benjamin J.</au><au>Taylor, Brittany L.</au><au>Gupta, Manu</au><au>Whitworth, Craig A.</au><au>Cady, Craig</au><au>Freeman, Joseph W.</au><au>El-Amin III, Saadiq F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In vitro evaluation of three-dimensional single-walled carbon nanotube composites for bone tissue engineering</atitle><jtitle>Journal of biomedical materials research. Part A</jtitle><addtitle>J. Biomed. Mater. Res</addtitle><date>2014-11</date><risdate>2014</risdate><volume>102</volume><issue>11</issue><spage>4118</spage><epage>4126</epage><pages>4118-4126</pages><issn>1549-3296</issn><eissn>1552-4965</eissn><abstract>The purpose of this study was to develop three‐dimensional single‐walled carbon nanotube composites (SWCNT/PLAGA) using 10‐mg single‐walled carbon nanotubes (SWCNT) for bone regeneration and to determine the mechanical strength of the composites, and to evaluate the interaction of MC3T3‐E1 cells via cell adhesion, growth, survival, proliferation, and gene expression. PLAGA (polylactic‐co‐glycolic acid) and SWCNT/PLAGA microspheres and composites were fabricated, characterized, and mechanical testing was performed. MC3T3‐E1 cells were seeded and cell adhesion/morphology, growth/survival, proliferation, and gene expression analysis were performed to evaluate biocompatibility. Imaging studies demonstrated microspheres with uniform shape and smooth surfaces, and uniform incorporation of SWCNT into PLAGA matrix. The microspheres bonded in a random packing manner while maintaining spacing, thus resembling trabeculae of cancellous bone. Addition of SWCNT led to greater compressive modulus and ultimate compressive strength. Imaging studies revealed that MC3T3‐E1 cells adhered, grew/survived, and exhibited normal, nonstressed morphology on the composites. SWCNT/PLAGA composites exhibited higher cell proliferation rate and gene expression compared with PLAGA. These results demonstrate the potential of SWCNT/PLAGA composites for musculoskeletal regeneration, for bone tissue engineering, and are promising for orthopedic applications as they possess the combined effect of increased mechanical strength, cell proliferation, and gene expression. © 2014 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 102A: 4118–4126, 2014.</abstract><cop>Hoboken, NJ</cop><pub>Blackwell Publishing Ltd</pub><pmid>24443220</pmid><doi>10.1002/jbm.a.35088</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1549-3296
ispartof Journal of biomedical materials research. Part A, 2014-11, Vol.102 (11), p.4118-4126
issn 1549-3296
1552-4965
language eng
recordid cdi_proquest_miscellaneous_1677922969
source MEDLINE; Wiley Online Library
subjects Animals
Biological and medical sciences
Biotechnology
Bone and Bones
bone tissue engineering
Bones
Cell adhesion
Cell Line
Cell Proliferation
Cell Survival
Cross-disciplinary physics: materials science
rheology
Exact sciences and technology
Fundamental and applied biological sciences. Psychology
Gene expression
Health. Pharmaceutical industry
Imaging
Industrial applications and implications. Economical aspects
Lactic Acid - chemistry
Materials science
Medical sciences
Mice
Microspheres
Miscellaneous
Morphology
Nanocomposites - chemistry
Nanoscale materials and structures: fabrication and characterization
Nanotubes
Nanotubes, Carbon - chemistry
Physics
PLAGA
Polyglycolic Acid - chemistry
Polylactic Acid-Polyglycolic Acid Copolymer
Regeneration
Single wall carbon nanotubes
Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases
SWCNT
SWCNT/PLAGA composites
SWCNT/PLAGA microspheres
Technology. Biomaterials. Equipments
Three dimensional
Tissue Engineering
title In vitro evaluation of three-dimensional single-walled carbon nanotube composites for bone tissue engineering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T18%3A18%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20vitro%20evaluation%20of%20three-dimensional%20single-walled%20carbon%20nanotube%20composites%20for%20bone%20tissue%20engineering&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20A&rft.au=Gupta,%20Ashim&rft.date=2014-11&rft.volume=102&rft.issue=11&rft.spage=4118&rft.epage=4126&rft.pages=4118-4126&rft.issn=1549-3296&rft.eissn=1552-4965&rft_id=info:doi/10.1002/jbm.a.35088&rft_dat=%3Cproquest_pubme%3E3612328141%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1660194059&rft_id=info:pmid/24443220&rfr_iscdi=true